
Building VPNs in EC2
Practical Experiences with

Virtualization on Virtualization

Brandon Black - blblack@gmail.com



Cloud Tradeoffs

Commoditizes the "deployed hardware" layer
"You're not a datacenter company, so don't waste 
time and money on datacenter ops"
Focuses more on your core functionality
Commodity always comes at a cost:

Less customization
Accepting a fixed set of capabilities



Basic EC2 Networking Limitations

Limited IP Proto Support: TCP, UDP, ICMP
Your hosts are randomly sub-netted
Divided into a topology you can't predict or 
control, by routers you don't control
1x Private IP per host...
Private DNS constantly in flux, no fixed scheme
1x Public IP per host via 1:1 NAT...



Heartbeat ?

Standard resiliency tool on real hosts, but...
One virtual eth0 per host:

no redundant paths
unable to reliably determine failure mode

One fixed/random private IP:
no ability to failover a private IP

STONITH via node termination is dangerous.
You could fail a public IP, but it would probably 
bounce around given the above.



Elastic Load Balancing! (?)

Great idea in theory, but...
Resolves via cross-zone CNAME w/ short TTL:

Cannot ELB zone root
DNS latency increases

Only basic HTTP/HTTPS proxied correctly
Other TCP "works", but source IP lost
Health check options limited/weak



MySqueezebox.Com

Constant traffic from all over the globe
~160-300 Mbps public traffic (tx+rx)
206 Bytes Avg Packet Size
= 100-200K pps
~250K concurrent TCP sessions, long-lived
Majority is custom "SlimProto" protocol
Protocol can't be changed (firmware limits)
No Layer7 Proxy for it (yet)
Infrastructure relies on Layer4 IPVS+NAT





Migrating MySB to EC2

Pushed by hosting/bandwidth cost/focus 
concerns, upcoming hardware purchases 
imminent due to userbase growth, but...
Can't work on EC2 natively:

Existing IPVS+NAT vs EC2 network
Existing monitor/balance tools, etc...

Developers cannot fundamentally change 
architecture to match EC2 on ops schedule
We Need A VPN



tinc!

We chose tinc after surveying the available 
options:

Simple, well-maintained, high code quality
Very easy to configure/deploy [puppet]
Works over TCP or UDP [critical for EC2]

TCP is a non-starter, because putting 100K+ TCP 
connections inside another TCP connection is a 
fundamentally bad idea.
So we start testing w/ tinc on UDP.



Load Testing...

Heavy CPU bottlenecking on Loadbalancer...
Disabling auth/crypt helps a lot...
Still too high: tinc is single-threaded, one CPU 
locks up, rest are idle.
Split the VPN into point-to-point links



Point-to-Point VPN Setup...



More Load Testing ...

CPUs much better now
But VPN network is unreliable...

lots of TCP slowdowns
connect() failures
packet loss
data latency
poor user experience



Why?

EC2 UDP traffic has re-ordering issues
Frequent queue-jumping, e.g. 1 packet gets 
jumps ahead of 2000 others from the same 
socket in EC2's network queue.
tinc uses packet seqnos to prevent replay 
attacks: when 1 packet jumps too far, other 
2000 are discarded.



Patch it!

We patched tinc 1.0.x to allow:
configurable replay window size
some queue-jumping resilience
disable replay protection via config

And a few more tune-ables to play with:
configurable socket buffer sizes
IFF_ONE_QUEUE



Success

Able to move all users to EC2 in time for xmas 
rush, VPN is stable and reliable.
New limits approaching, architecture is a 
constant challenge as always, that's life.



Was it worth it?

Yes!
Operating expenses per user (hosting/traffic) 
roughly cut in half
No more capital expenses on hardware 
replacement/expansion
No more wasting smart engineers' time dealing 
with the physical layer all around the globe



Looking Forward...

Today our LBs are m2.4xlarge and the VPN itself 
still consumes notable amounts of CPU.
Tomorrow they could be cc1.4xlarge:

10x network traffic
+30% CPU

EC2 Overlay VPNs don't need security
They should strive for being performance-
transparent



Future Perf Hacks for VPN s/w?

Security needs to be optional
Event-driven design a must: epoll(2), kqueue(2)
Threading for scaling over cores
recvmmsg(2), sendmmsg(2)

Multiple packets per syscall/socket-lock
sendmmsg(2) Not Yet Implemented

splice(2): avoiding kernel->user->kernel memcpy
Kernel modules?


