aedde3f84d6a1da1a3e0fdeb3847e3ee2d5c9bdf
[tinc] / doc / tinc.texi
1 \input texinfo   @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename tinc.info
4 @settitle tinc Manual
5 @setchapternewpage odd
6 @c %**end of header
7
8 @include tincinclude.texi
9
10 @ifinfo
11 @dircategory Networking tools
12 @direntry
13 * tinc: (tinc).              The tinc Manual.
14 @end direntry
15
16 This is the info manual for @value{PACKAGE} version @value{VERSION}, a Virtual Private Network daemon.
17
18 Copyright @copyright{} 1998-2012 Ivo Timmermans,
19 Guus Sliepen <guus@@tinc-vpn.org> and
20 Wessel Dankers <wsl@@tinc-vpn.org>.
21
22 Permission is granted to make and distribute verbatim copies of this
23 manual provided the copyright notice and this permission notice are
24 preserved on all copies.
25
26 Permission is granted to copy and distribute modified versions of this
27 manual under the conditions for verbatim copying, provided that the
28 entire resulting derived work is distributed under the terms of a
29 permission notice identical to this one.
30
31 @end ifinfo
32
33 @titlepage
34 @title tinc Manual
35 @subtitle Setting up a Virtual Private Network with tinc
36 @author Ivo Timmermans and Guus Sliepen
37
38 @page
39 @vskip 0pt plus 1filll
40 This is the info manual for @value{PACKAGE} version @value{VERSION}, a Virtual Private Network daemon.
41
42 Copyright @copyright{} 1998-2012 Ivo Timmermans,
43 Guus Sliepen <guus@@tinc-vpn.org> and
44 Wessel Dankers <wsl@@tinc-vpn.org>.
45
46 Permission is granted to make and distribute verbatim copies of this
47 manual provided the copyright notice and this permission notice are
48 preserved on all copies.
49
50 Permission is granted to copy and distribute modified versions of this
51 manual under the conditions for verbatim copying, provided that the
52 entire resulting derived work is distributed under the terms of a
53 permission notice identical to this one.
54
55 @end titlepage
56
57 @ifnottex
58 @c ==================================================================
59 @node Top
60 @top Top
61
62 @menu
63 * Introduction::
64 * Preparations::
65 * Installation::
66 * Configuration::
67 * Running tinc::
68 * Technical information::
69 * Platform specific information::
70 * About us::
71 * Concept Index::               All used terms explained
72 @end menu
73 @end ifnottex
74
75 @c ==================================================================
76 @node    Introduction
77 @chapter Introduction
78
79 @cindex tinc
80 Tinc is a Virtual Private Network (VPN) daemon that uses tunneling and
81 encryption to create a secure private network between hosts on the
82 Internet.
83
84 Because the tunnel appears to the IP level network code as a normal
85 network device, there is no need to adapt any existing software.
86 The encrypted tunnels allows VPN sites to share information with each other
87 over the Internet without exposing any information to others.
88
89 This document is the manual for tinc.  Included are chapters on how to
90 configure your computer to use tinc, as well as the configuration
91 process of tinc itself.
92
93 @menu
94 * Virtual Private Networks::
95 * tinc::                        About tinc
96 * Supported platforms::
97 @end menu
98
99 @c ==================================================================
100 @node    Virtual Private Networks
101 @section Virtual Private Networks
102
103 @cindex VPN
104 A Virtual Private Network or VPN is a network that can only be accessed
105 by a few elected computers that participate.  This goal is achievable in
106 more than just one way.
107
108 @cindex private
109 Private networks can consist of a single stand-alone Ethernet LAN.  Or
110 even two computers hooked up using a null-modem cable.  In these cases,
111 it is
112 obvious that the network is @emph{private}, no one can access it from the
113 outside.  But if your computers are linked to the Internet, the network
114 is not private anymore, unless one uses firewalls to block all private
115 traffic.  But then, there is no way to send private data to trusted
116 computers on the other end of the Internet.
117
118 @cindex virtual
119 This problem can be solved by using @emph{virtual} networks.  Virtual
120 networks can live on top of other networks, but they use encapsulation to
121 keep using their private address space so they do not interfere with
122 the Internet.  Mostly, virtual networks appear like a single LAN, even though
123 they can span the entire world.  But virtual networks can't be secured
124 by using firewalls, because the traffic that flows through it has to go
125 through the Internet, where other people can look at it.
126
127 As is the case with either type of VPN, anybody could eavesdrop.  Or
128 worse, alter data.  Hence it's probably advisable to encrypt the data
129 that flows over the network.
130
131 When one introduces encryption, we can form a true VPN.  Other people may
132 see encrypted traffic, but if they don't know how to decipher it (they
133 need to know the key for that), they cannot read the information that flows
134 through the VPN.  This is what tinc was made for.
135
136
137 @c ==================================================================
138 @node    tinc
139 @section tinc
140
141 @cindex vpnd
142 I really don't quite remember what got us started, but it must have been
143 Guus' idea.  He wrote a simple implementation (about 50 lines of C) that
144 used the ethertap device that Linux knows of since somewhere
145 about kernel 2.1.60.  It didn't work immediately and he improved it a
146 bit.  At this stage, the project was still simply called "vpnd".
147
148 Since then, a lot has changed---to say the least.
149
150 @cindex tincd
151 Tinc now supports encryption, it consists of a single daemon (tincd) for
152 both the receiving and sending end, it has become largely
153 runtime-configurable---in short, it has become a full-fledged
154 professional package.
155
156 @cindex traditional VPNs
157 @cindex scalability
158 Tinc also allows more than two sites to connect to eachother and form a single VPN.
159 Traditionally VPNs are created by making tunnels, which only have two endpoints.
160 Larger VPNs with more sites are created by adding more tunnels.
161 Tinc takes another approach: only endpoints are specified,
162 the software itself will take care of creating the tunnels.
163 This allows for easier configuration and improved scalability.
164
165 A lot can---and will be---changed. We have a number of things that we would like to
166 see in the future releases of tinc.  Not everything will be available in
167 the near future.  Our first objective is to make tinc work perfectly as
168 it stands, and then add more advanced features.
169
170 Meanwhile, we're always open-minded towards new ideas.  And we're
171 available too.
172
173
174 @c ==================================================================
175 @node    Supported platforms
176 @section Supported platforms
177
178 @cindex platforms
179 Tinc has been verified to work under Linux, FreeBSD, OpenBSD, NetBSD, MacOS/X (Darwin), Solaris, and Windows (both natively and in a Cygwin environment),
180 with various hardware architectures.  These are some of the platforms
181 that are supported by the universal tun/tap device driver or other virtual network device drivers.
182 Without such a driver, tinc will most
183 likely compile and run, but it will not be able to send or receive data
184 packets.
185
186 @cindex release
187 For an up to date list of supported platforms, please check the list on
188 our website:
189 @uref{http://www.tinc-vpn.org/platforms}.
190
191 @c
192 @c
193 @c
194 @c
195 @c
196 @c
197 @c       Preparing your system
198 @c
199 @c
200 @c
201 @c
202 @c
203
204 @c ==================================================================
205 @node    Preparations
206 @chapter Preparations
207
208 This chapter contains information on how to prepare your system to
209 support tinc.
210
211 @menu
212 * Configuring the kernel::
213 * Libraries::
214 @end menu
215
216
217 @c ==================================================================
218 @node    Configuring the kernel
219 @section Configuring the kernel
220
221 @menu
222 * Configuration of Linux kernels::
223 * Configuration of FreeBSD kernels::
224 * Configuration of OpenBSD kernels::
225 * Configuration of NetBSD kernels::
226 * Configuration of Solaris kernels::
227 * Configuration of Darwin (MacOS/X) kernels::
228 * Configuration of Windows::
229 @end menu
230
231
232 @c ==================================================================
233 @node       Configuration of Linux kernels
234 @subsection Configuration of Linux kernels
235
236 @cindex Universal tun/tap
237 For tinc to work, you need a kernel that supports the Universal tun/tap device.
238 Most distributions come with kernels that already support this.
239 Here are the options you have to turn on when configuring a new kernel:
240
241 @example
242 Code maturity level options
243 [*] Prompt for development and/or incomplete code/drivers
244 Network device support
245 <M> Universal tun/tap device driver support
246 @end example
247
248 It's not necessary to compile this driver as a module, even if you are going to
249 run more than one instance of tinc.
250
251 If you decide to build the tun/tap driver as a kernel module, add these lines
252 to @file{/etc/modules.conf}:
253
254 @example
255 alias char-major-10-200 tun
256 @end example
257
258
259 @c ==================================================================
260 @node       Configuration of FreeBSD kernels
261 @subsection Configuration of FreeBSD kernels
262
263 For FreeBSD version 4.1 and higher, tun and tap drivers are included in the default kernel configuration.
264 Using tap devices is recommended.
265
266
267 @c ==================================================================
268 @node       Configuration of OpenBSD kernels
269 @subsection Configuration of OpenBSD kernels
270
271 For OpenBSD version 2.9 and higher,
272 the tun driver is included in the default kernel configuration.
273 There is also a kernel patch from @uref{http://diehard.n-r-g.com/stuff/openbsd/}
274 which adds a tap device to OpenBSD which should work with tinc,
275 but with recent versions of OpenBSD,
276 a tun device can act as a tap device by setting the link0 option with ifconfig.
277
278 @c ==================================================================
279 @node       Configuration of NetBSD kernels
280 @subsection Configuration of NetBSD kernels
281
282 For NetBSD version 1.5.2 and higher,
283 the tun driver is included in the default kernel configuration.
284
285 Tunneling IPv6 may not work on NetBSD's tun device.
286
287
288 @c ==================================================================
289 @node       Configuration of Solaris kernels
290 @subsection Configuration of Solaris kernels
291
292 For Solaris 8 (SunOS 5.8) and higher,
293 the tun driver may or may not be included in the default kernel configuration.
294 If it isn't, the source can be downloaded from @uref{http://vtun.sourceforge.net/tun/}.
295 For x86 and sparc64 architectures, precompiled versions can be found at @uref{http://www.monkey.org/~dugsong/fragroute/}.
296 If the @file{net/if_tun.h} header file is missing, install it from the source package.
297
298
299 @c ==================================================================
300 @node       Configuration of Darwin (MacOS/X) kernels
301 @subsection Configuration of Darwin (MacOS/X) kernels
302
303 Tinc on Darwin relies on a tunnel driver for its data acquisition from the kernel.
304 Tinc supports either the driver from @uref{http://tuntaposx.sourceforge.net/},
305 which supports both tun and tap style devices,
306 and also the driver from from @uref{http://chrisp.de/en/projects/tunnel.html}.
307 The former driver is recommended.
308 The tunnel driver must be loaded before starting tinc with the following command:
309
310 @example
311 kmodload tunnel
312 @end example
313
314
315 @c ==================================================================
316 @node       Configuration of Windows
317 @subsection Configuration of Windows
318
319 You will need to install the latest TAP-Win32 driver from OpenVPN.
320 You can download it from @uref{http://openvpn.sourceforge.net}.
321 Using the Network Connections control panel,
322 configure the TAP-Win32 network interface in the same way as you would do from the tinc-up script,
323 as explained in the rest of the documentation.
324
325
326 @c ==================================================================
327 @node    Libraries
328 @section Libraries
329
330 @cindex requirements
331 @cindex libraries
332 Before you can configure or build tinc, you need to have the OpenSSL,
333 zlib and lzo libraries installed on your system.  If you try to configure tinc without
334 having them installed, configure will give you an error message, and stop.
335
336 @menu
337 * OpenSSL::
338 * zlib::
339 * lzo::
340 @end menu
341
342
343 @c ==================================================================
344 @node       OpenSSL
345 @subsection OpenSSL
346
347 @cindex OpenSSL
348 For all cryptography-related functions, tinc uses the functions provided
349 by the OpenSSL library.
350
351 If this library is not installed, you wil get an error when configuring
352 tinc for build.  Support for running tinc without having OpenSSL
353 installed @emph{may} be added in the future.
354
355 You can use your operating system's package manager to install this if
356 available.  Make sure you install the development AND runtime versions
357 of this package.
358
359 If you have to install OpenSSL manually, you can get the source code
360 from @url{http://www.openssl.org/}.  Instructions on how to configure,
361 build and install this package are included within the package.  Please
362 make sure you build development and runtime libraries (which is the
363 default).
364
365 If you installed the OpenSSL libraries from source, it may be necessary
366 to let configure know where they are, by passing configure one of the
367 --with-openssl-* parameters.
368
369 @example
370 --with-openssl=DIR      OpenSSL library and headers prefix
371 --with-openssl-include=DIR OpenSSL headers directory
372                         (Default is OPENSSL_DIR/include)
373 --with-openssl-lib=DIR  OpenSSL library directory
374                         (Default is OPENSSL_DIR/lib)
375 @end example
376
377
378 @subsubheading License
379
380 @cindex license
381 The complete source code of tinc is covered by the GNU GPL version 2.
382 Since the license under which OpenSSL is distributed is not directly
383 compatible with the terms of the GNU GPL
384 @uref{http://www.openssl.org/support/faq.html#LEGAL2}, we
385 include an exemption to the GPL (see also the file COPYING.README) to allow
386 everyone to create a statically or dynamically linked executable:
387
388 @quotation
389 This program is released under the GPL with the additional exemption
390 that compiling, linking, and/or using OpenSSL is allowed.  You may
391 provide binary packages linked to the OpenSSL libraries, provided that
392 all other requirements of the GPL are met.
393 @end quotation
394
395 Since the LZO library used by tinc is also covered by the GPL,
396 we also present the following exemption:
397
398 @quotation
399 Hereby I grant a special exception to the tinc VPN project
400 (http://www.tinc-vpn.org/) to link the LZO library with the OpenSSL library
401 (http://www.openssl.org).
402
403 Markus F.X.J. Oberhumer
404 @end quotation
405
406
407 @c ==================================================================
408 @node       zlib
409 @subsection zlib
410
411 @cindex zlib
412 For the optional compression of UDP packets, tinc uses the functions provided
413 by the zlib library.
414
415 If this library is not installed, you wil get an error when configuring
416 tinc for build.  Support for running tinc without having zlib
417 installed @emph{may} be added in the future.
418
419 You can use your operating system's package manager to install this if
420 available.  Make sure you install the development AND runtime versions
421 of this package.
422
423 If you have to install zlib manually, you can get the source code
424 from @url{http://www.gzip.org/zlib/}.  Instructions on how to configure,
425 build and install this package are included within the package.  Please
426 make sure you build development and runtime libraries (which is the
427 default).
428
429
430 @c ==================================================================
431 @node       lzo
432 @subsection lzo
433
434 @cindex lzo
435 Another form of compression is offered using the lzo library.
436
437 If this library is not installed, you wil get an error when configuring
438 tinc for build.  Support for running tinc without having lzo
439 installed @emph{may} be added in the future.
440
441 You can use your operating system's package manager to install this if
442 available.  Make sure you install the development AND runtime versions
443 of this package.
444
445 If you have to install lzo manually, you can get the source code
446 from @url{http://www.oberhumer.com/opensource/lzo/}.  Instructions on how to configure,
447 build and install this package are included within the package.  Please
448 make sure you build development and runtime libraries (which is the
449 default).
450
451
452 @c
453 @c
454 @c
455 @c      Installing tinc
456 @c
457 @c
458 @c
459 @c
460
461 @c ==================================================================
462 @node    Installation
463 @chapter Installation
464
465 If you use Debian, you may want to install one of the
466 precompiled packages for your system.  These packages are equipped with
467 system startup scripts and sample configurations.
468
469 If you cannot use one of the precompiled packages, or you want to compile tinc
470 for yourself, you can use the source.  The source is distributed under
471 the GNU General Public License (GPL).  Download the source from the
472 @uref{http://www.tinc-vpn.org/download, download page}, which has
473 the checksums of these files listed; you may wish to check these with
474 md5sum before continuing.
475
476 Tinc comes in a convenient autoconf/automake package, which you can just
477 treat the same as any other package.  Which is just untar it, type
478 `./configure' and then `make'.
479 More detailed instructions are in the file @file{INSTALL}, which is
480 included in the source distribution.
481
482 @menu
483 * Building and installing tinc::
484 * System files::
485 @end menu
486
487
488 @c ==================================================================
489 @node    Building and installing tinc
490 @section Building and installing tinc
491
492 Detailed instructions on configuring the source, building tinc and installing tinc
493 can be found in the file called @file{INSTALL}.
494
495 @cindex binary package
496 If you happen to have a binary package for tinc for your distribution,
497 you can use the package management tools of that distribution to install tinc.
498 The documentation that comes along with your distribution will tell you how to do that.
499
500 @menu
501 * Darwin (MacOS/X) build environment::
502 * Cygwin (Windows) build environment::
503 * MinGW (Windows) build environment::
504 @end menu
505
506
507 @c ==================================================================
508 @node       Darwin (MacOS/X) build environment
509 @subsection Darwin (MacOS/X) build environment
510
511 In order to build tinc on Darwin, you need to install the MacOS/X Developer Tools
512 from @uref{http://developer.apple.com/tools/macosxtools.html} and
513 a recent version of Fink from @uref{http://fink.sourceforge.net/}.
514
515 After installation use fink to download and install the following packages:
516 autoconf25, automake, dlcompat, m4, openssl, zlib and lzo.
517
518 @c ==================================================================
519 @node       Cygwin (Windows) build environment
520 @subsection Cygwin (Windows) build environment
521
522 If Cygwin hasn't already been installed, install it directly from
523 @uref{http://www.cygwin.com/}.
524
525 When tinc is compiled in a Cygwin environment, it can only be run in this environment,
526 but all programs, including those started outside the Cygwin environment, will be able to use the VPN.
527 It will also support all features.
528
529 @c ==================================================================
530 @node       MinGW (Windows) build environment
531 @subsection MinGW (Windows) build environment
532
533 You will need to install the MinGW environment from @uref{http://www.mingw.org}.
534
535 When tinc is compiled using MinGW it runs natively under Windows,
536 it is not necessary to keep MinGW installed.
537
538 When detaching, tinc will install itself as a service,
539 which will be restarted automatically after reboots.
540
541
542 @c ==================================================================
543 @node    System files
544 @section System files
545
546 Before you can run tinc, you must make sure you have all the needed
547 files on your system.
548
549 @menu
550 * Device files::
551 * Other files::
552 @end menu
553
554
555 @c ==================================================================
556 @node       Device files
557 @subsection Device files
558
559 @cindex device files
560 Most operating systems nowadays come with the necessary device files by default,
561 or they have a mechanism to create them on demand.
562
563 If you use Linux and do not have udev installed,
564 you may need to create the following device file if it does not exist:
565
566 @example
567 mknod -m 600 /dev/net/tun c 10 200
568 @end example
569
570
571 @c ==================================================================
572 @node       Other files
573 @subsection Other files
574
575 @subsubheading @file{/etc/networks}
576
577 You may add a line to @file{/etc/networks} so that your VPN will get a
578 symbolic name.  For example:
579
580 @example
581 myvpn 10.0.0.0
582 @end example
583
584 @subsubheading @file{/etc/services}
585
586 @cindex port numbers
587 You may add this line to @file{/etc/services}.  The effect is that you
588 may supply a @samp{tinc} as a valid port number to some programs.  The
589 number 655 is registered with the IANA.
590
591 @example
592 tinc            655/tcp    TINC
593 tinc            655/udp    TINC
594 #                          Ivo Timmermans <ivo@@tinc-vpn.org>
595 @end example
596
597
598 @c
599 @c
600 @c
601 @c
602 @c         Configuring tinc
603 @c
604 @c
605 @c
606 @c
607
608
609 @c ==================================================================
610 @node    Configuration
611 @chapter Configuration
612
613 @menu
614 * Configuration introduction::
615 * Multiple networks::
616 * How connections work::
617 * Configuration files::
618 * Generating keypairs::
619 * Network interfaces::
620 * Example configuration::
621 @end menu
622
623 @c ==================================================================
624 @node    Configuration introduction
625 @section Configuration introduction
626
627 Before actually starting to configure tinc and editing files,
628 make sure you have read this entire section so you know what to expect.
629 Then, make it clear to yourself how you want to organize your VPN:
630 What are the nodes (computers running tinc)?
631 What IP addresses/subnets do they have?
632 What is the network mask of the entire VPN?
633 Do you need special firewall rules?
634 Do you have to set up masquerading or forwarding rules?
635 Do you want to run tinc in router mode or switch mode?
636 These questions can only be answered by yourself,
637 you will not find the answers in this documentation.
638 Make sure you have an adequate understanding of networks in general.
639 @cindex Network Administrators Guide
640 A good resource on networking is the
641 @uref{http://www.linuxdoc.org/LDP/nag2/, Linux Network Administrators Guide}.
642
643 If you have everything clearly pictured in your mind,
644 proceed in the following order:
645 First, generate the configuration files (@file{tinc.conf}, your host configuration file, @file{tinc-up} and perhaps @file{tinc-down}).
646 Then generate the keypairs.
647 Finally, distribute the host configuration files.
648 These steps are described in the subsections below.
649
650
651 @c ==================================================================
652 @node    Multiple networks
653 @section Multiple networks
654
655 @cindex multiple networks
656 @cindex netname
657 In order to allow you to run more than one tinc daemon on one computer,
658 for instance if your computer is part of more than one VPN,
659 you can assign a @var{netname} to your VPN.
660 It is not required if you only run one tinc daemon,
661 it doesn't even have to be the same on all the sites of your VPN,
662 but it is recommended that you choose one anyway.
663
664 We will asume you use a netname throughout this document.
665 This means that you call tincd with the -n argument,
666 which will assign a netname to this daemon.
667
668 The effect of this is that the daemon will set its configuration
669 root to @file{@value{sysconfdir}/tinc/@var{netname}/}, where @var{netname} is your argument to the -n
670 option.  You'll notice that it appears in syslog as @file{tinc.@var{netname}}.
671
672 However, it is not strictly necessary that you call tinc with the -n
673 option.  In this case, the network name would just be empty, and it will
674 be used as such.  tinc now looks for files in @file{@value{sysconfdir}/tinc/}, instead of
675 @file{@value{sysconfdir}/tinc/@var{netname}/}; the configuration file should be @file{@value{sysconfdir}/tinc/tinc.conf},
676 and the host configuration files are now expected to be in @file{@value{sysconfdir}/tinc/hosts/}.
677
678 But it is highly recommended that you use this feature of tinc, because
679 it will be so much clearer whom your daemon talks to.  Hence, we will
680 assume that you use it.
681
682
683 @c ==================================================================
684 @node    How connections work
685 @section How connections work
686
687 When tinc starts up, it parses the command-line options and then
688 reads in the configuration file tinc.conf.
689 If it sees one or more  `ConnectTo' values pointing to other tinc daemons in that file,
690 it will try to connect to those other daemons.
691 Whether this succeeds or not and whether `ConnectTo' is specified or not,
692 tinc will listen for incoming connection from other deamons.
693 If you did specify a `ConnectTo' value and the other side is not responding,
694 tinc will keep retrying.
695 This means that once started, tinc will stay running until you tell it to stop,
696 and failures to connect to other tinc daemons will not stop your tinc daemon
697 for trying again later.
698 This means you don't have to intervene if there are temporary network problems.
699
700 @cindex client
701 @cindex server
702 There is no real distinction between a server and a client in tinc.
703 If you wish, you can view a tinc daemon without a `ConnectTo' value as a server,
704 and one which does specify such a value as a client.
705 It does not matter if two tinc daemons have a `ConnectTo' value pointing to each other however.
706
707
708 @c ==================================================================
709 @node    Configuration files
710 @section Configuration files
711
712 The actual configuration of the daemon is done in the file
713 @file{@value{sysconfdir}/tinc/@var{netname}/tinc.conf} and at least one other file in the directory
714 @file{@value{sysconfdir}/tinc/@var{netname}/hosts/}.
715
716 These file consists of comments (lines started with a #) or assignments
717 in the form of
718
719 @example
720 Variable = Value.
721 @end example
722
723 The variable names are case insensitive, and any spaces, tabs, newlines
724 and carriage returns are ignored.  Note: it is not required that you put
725 in the `=' sign, but doing so improves readability.  If you leave it
726 out, remember to replace it with at least one space character.
727
728 The server configuration is complemented with host specific configuration (see
729 the next section). Although all host configuration options for the local node
730 listed in this document can also be put in
731 @file{@value{sysconfdir}/tinc/@var{netname}/tinc.conf}, it is recommended to
732 put host specific configuration options in the host configuration file, as this
733 makes it easy to exchange with other nodes.
734
735 In this section all valid variables are listed in alphabetical order.
736 The default value is given between parentheses,
737 other comments are between square brackets.
738
739 @menu
740 * Main configuration variables::
741 * Host configuration variables::
742 * Scripts::
743 * How to configure::
744 @end menu
745
746
747 @c ==================================================================
748 @node       Main configuration variables
749 @subsection Main configuration variables
750
751 @table @asis
752 @cindex AddressFamily
753 @item AddressFamily = <ipv4|ipv6|any> (any)
754 This option affects the address family of listening and outgoing sockets.
755 If any is selected, then depending on the operating system
756 both IPv4 and IPv6 or just IPv6 listening sockets will be created.
757
758 @cindex BindToAddress
759 @item BindToAddress = <@var{address}> [experimental]
760 If your computer has more than one IPv4 or IPv6 address, tinc
761 will by default listen on all of them for incoming connections.
762 Multiple BindToAddress variables may be specified,
763 in which case listening sockets for each specified address are made.
764
765 This option may not work on all platforms.
766
767 @cindex BindToInterface
768 @item BindToInterface = <@var{interface}> [experimental]
769 If you have more than one network interface in your computer, tinc will
770 by default listen on all of them for incoming connections.  It is
771 possible to bind tinc to a single interface like eth0 or ppp0 with this
772 variable.
773
774 This option may not work on all platforms.
775
776 @cindex Broadcast
777 @item Broadcast = <yes | no> (yes) [experimental]
778 When disabled, tinc will drop all broadcast and multicast packets, in both router and switch mode.
779
780 @cindex ConnectTo
781 @item ConnectTo = <@var{name}>
782 Specifies which other tinc daemon to connect to on startup.
783 Multiple ConnectTo variables may be specified,
784 in which case outgoing connections to each specified tinc daemon are made.
785 The names should be known to this tinc daemon
786 (i.e., there should be a host configuration file for the name on the ConnectTo line).
787
788 If you don't specify a host with ConnectTo,
789 tinc won't try to connect to other daemons at all,
790 and will instead just listen for incoming connections.
791
792 @cindex DecrementTTL
793 @item DecrementTTL = <yes | no> (yes)
794 When enabled, tinc will decrement the Time To Live field in IPv4 packets, or the Hop Limit field in IPv6 packets,
795 before forwarding a received packet to the virtual network device or to another node,
796 and will drop packets that have a TTL value of zero,
797 in which case it will send an ICMP Time Exceeded packet back.
798
799 @cindex Device
800 @item Device = <@var{device}> (@file{/dev/tap0}, @file{/dev/net/tun} or other depending on platform)
801 The virtual network device to use.
802 Tinc will automatically detect what kind of device it is.
803 Note that you can only use one device per daemon.
804 Under Windows, use @var{Interface} instead of @var{Device}.
805 Note that you can only use one device per daemon.
806 See also @ref{Device files}.
807
808 @cindex DeviceType
809 @item DeviceType = <@var{type}> (platform dependent)
810 The type of the virtual network device.
811 Tinc will normally automatically select the right type of tun/tap interface, and this option should not be used.
812 However, this option can be used to select one of the special interface types, if support for them is compiled in.
813
814 @table @asis
815 @cindex dummy
816 @item dummy
817 Use a dummy interface.
818 No packets are ever read or written to a virtual network device.
819 Useful for testing, or when setting up a node that only forwards packets for other nodes.
820
821 @cindex raw_socket
822 @item raw_socket
823 Open a raw socket, and bind it to a pre-existing
824 @var{Interface} (eth0 by default).
825 All packets are read from this interface.
826 Packets received for the local node are written to the raw socket.
827 However, at least on Linux, the operating system does not process IP packets destined for the local host.
828
829 @cindex UML
830 @item uml (not compiled in by default)
831 Create a UNIX socket with the filename specified by
832 @var{Device}, or @file{@value{localstatedir}/run/@var{netname}.umlsocket}
833 if not specified.
834 Tinc will wait for a User Mode Linux instance to connect to this socket.
835
836 @cindex VDE
837 @item vde (not compiled in by default)
838 Uses the libvdeplug library to connect to a Virtual Distributed Ethernet switch,
839 using the UNIX socket specified by
840 @var{Device}, or @file{@value{localstatedir}/run/vde.ctl}
841 if not specified.
842 @end table
843
844 Also, in case tinc does not seem to correctly interpret packets received from the virtual network device,
845 it can be used to change the way packets are interpreted:
846
847 @table @asis
848 @item tun (BSD and Linux)
849 Set type to tun.
850 Depending on the platform, this can either be with or without an address family header (see below).
851
852 @cindex tunnohead
853 @item tunnohead (BSD)
854 Set type to tun without an address family header.
855 Tinc will expect packets read from the virtual network device to start with an IP header.
856 On some platforms IPv6 packets cannot be read from or written to the device in this mode.
857
858 @cindex tunifhead
859 @item tunifhead (BSD)
860 Set type to tun with an address family header.
861 Tinc will expect packets read from the virtual network device
862 to start with a four byte header containing the address family,
863 followed by an IP header.
864 This mode should support both IPv4 and IPv6 packets.
865
866 @item tap (BSD and Linux)
867 Set type to tap.
868 Tinc will expect packets read from the virtual network device
869 to start with an Ethernet header.
870 @end table
871
872 @cindex DirectOnly
873 @item DirectOnly = <yes|no> (no) [experimental]
874 When this option is enabled, packets that cannot be sent directly to the destination node,
875 but which would have to be forwarded by an intermediate node, are dropped instead.
876 When combined with the IndirectData option,
877 packets for nodes for which we do not have a meta connection with are also dropped.
878
879 @cindex Forwarding
880 @item Forwarding = <off|internal|kernel> (internal) [experimental]
881 This option selects the way indirect packets are forwarded.
882
883 @table @asis
884 @item off
885 Incoming packets that are not meant for the local node,
886 but which should be forwarded to another node, are dropped.
887
888 @item internal
889 Incoming packets that are meant for another node are forwarded by tinc internally.
890
891 This is the default mode, and unless you really know you need another forwarding mode, don't change it.
892
893 @item kernel
894 Incoming packets are always sent to the TUN/TAP device, even if the packets are not for the local node.
895 This is less efficient, but allows the kernel to apply its routing and firewall rules on them,
896 and can also help debugging.
897 @end table
898
899 @cindex GraphDumpFile
900 @item GraphDumpFile = <@var{filename}> [experimental]
901 If this option is present,
902 tinc will dump the current network graph to the file @var{filename}
903 every minute, unless there were no changes to the graph.
904 The file is in a format that can be read by graphviz tools.
905 If @var{filename} starts with a pipe symbol |,
906 then the rest of the filename is interpreted as a shell command
907 that is executed, the graph is then sent to stdin.
908
909 @cindex Hostnames
910 @item Hostnames = <yes|no> (no)
911 This option selects whether IP addresses (both real and on the VPN)
912 should be resolved.  Since DNS lookups are blocking, it might affect
913 tinc's efficiency, even stopping the daemon for a few seconds everytime
914 it does a lookup if your DNS server is not responding.
915
916 This does not affect resolving hostnames to IP addresses from the
917 configuration file.
918
919 @cindex Interface
920 @item Interface = <@var{interface}>
921 Defines the name of the interface corresponding to the virtual network device.
922 Depending on the operating system and the type of device this may or may not actually set the name of the interface.
923 Under Windows, this variable is used to select which network interface will be used.
924 If you specified a Device, this variable is almost always already correctly set.
925
926 @cindex LocalDiscovery
927 @item LocalDiscovery = <yes | no> (no) [experimental]
928 When enabled, tinc will try to detect peers that are on the same local network.
929 This will allow direct communication using LAN addresses, even if both peers are behind a NAT
930 and they only ConnectTo a third node outside the NAT,
931 which normally would prevent the peers from learning each other's LAN address.
932
933 Currently, local discovery is implemented by sending broadcast packets to the LAN during path MTU discovery.
934 This feature may not work in all possible situations.
935
936 @cindex Mode
937 @item Mode = <router|switch|hub> (router)
938 This option selects the way packets are routed to other daemons.
939
940 @table @asis
941 @cindex router
942 @item router
943 In this mode Subnet
944 variables in the host configuration files will be used to form a routing table.
945 Only unicast packets of routable protocols (IPv4 and IPv6) are supported in this mode.
946
947 This is the default mode, and unless you really know you need another mode, don't change it.
948
949 @cindex switch
950 @item switch
951 In this mode the MAC addresses of the packets on the VPN will be used to
952 dynamically create a routing table just like an Ethernet switch does.
953 Unicast, multicast and broadcast packets of every protocol that runs over Ethernet are supported in this mode
954 at the cost of frequent broadcast ARP requests and routing table updates.
955
956 This mode is primarily useful if you want to bridge Ethernet segments.
957
958 @cindex hub
959 @item hub
960 This mode is almost the same as the switch mode, but instead
961 every packet will be broadcast to the other daemons
962 while no routing table is managed.
963 @end table
964
965 @cindex KeyExpire
966 @item KeyExpire = <@var{seconds}> (3600)
967 This option controls the time the encryption keys used to encrypt the data
968 are valid.  It is common practice to change keys at regular intervals to
969 make it even harder for crackers, even though it is thought to be nearly
970 impossible to crack a single key.
971
972 @cindex MACExpire
973 @item MACExpire = <@var{seconds}> (600)
974 This option controls the amount of time MAC addresses are kept before they are removed.
975 This only has effect when Mode is set to "switch".
976
977 @cindex Name
978 @item Name = <@var{name}> [required]
979 This is a symbolic name for this connection.
980 The name should consist only of alfanumeric and underscore characters (a-z, A-Z, 0-9 and _).
981
982 @cindex PingInterval
983 @item PingInterval = <@var{seconds}> (60)
984 The number of seconds of inactivity that tinc will wait before sending a
985 probe to the other end.
986
987 @cindex PingTimeout
988 @item PingTimeout = <@var{seconds}> (5)
989 The number of seconds to wait for a response to pings or to allow meta
990 connections to block. If the other end doesn't respond within this time,
991 the connection is terminated, and the others will be notified of this.
992
993 @cindex PriorityInheritance
994 @item PriorityInheritance = <yes|no> (no) [experimental]
995 When this option is enabled the value of the TOS field of tunneled IPv4 packets
996 will be inherited by the UDP packets that are sent out.
997
998 @cindex PrivateKey
999 @item PrivateKey = <@var{key}> [obsolete]
1000 This is the RSA private key for tinc. However, for safety reasons it is
1001 advised to store private keys of any kind in separate files. This prevents
1002 accidental eavesdropping if you are editting the configuration file.
1003
1004 @cindex PrivateKeyFile
1005 @item PrivateKeyFile = <@var{path}> (@file{@value{sysconfdir}/tinc/@var{netname}/rsa_key.priv})
1006 This is the full path name of the RSA private key file that was
1007 generated by @samp{tincd --generate-keys}.  It must be a full path, not a
1008 relative directory.
1009
1010 Note that there must be exactly one of PrivateKey
1011 or PrivateKeyFile
1012 specified in the configuration file.
1013
1014 @cindex ProcessPriority
1015 @item ProcessPriority = <low|normal|high>
1016 When this option is used the priority of the tincd process will be adjusted.
1017 Increasing the priority may help to reduce latency and packet loss on the VPN.
1018
1019 @cindex ReplayWindow
1020 @item ReplayWindow = <bytes> (16)
1021 This is the size of the replay tracking window for each remote node, in bytes.
1022 The window is a bitfield which tracks 1 packet per bit, so for example
1023 the default setting of 16 will track up to 128 packets in the window. In high
1024 bandwidth scenarios, setting this to a higher value can reduce packet loss from
1025 the interaction of replay tracking with underlying real packet loss and/or
1026 reordering. Setting this to zero will disable replay tracking completely and
1027 pass all traffic, but leaves tinc vulnerable to replay-based attacks on your
1028 traffic.
1029
1030
1031 @cindex StrictSubnets
1032 @item StrictSubnets <yes|no> (no) [experimental]
1033 When this option is enabled tinc will only use Subnet statements which are
1034 present in the host config files in the local
1035 @file{@value{sysconfdir}/tinc/@var{netname}/hosts/} directory.
1036
1037 @cindex TunnelServer
1038 @item TunnelServer = <yes|no> (no) [experimental]
1039 When this option is enabled tinc will no longer forward information between other tinc daemons,
1040 and will only allow connections with nodes for which host config files are present in the local
1041 @file{@value{sysconfdir}/tinc/@var{netname}/hosts/} directory.
1042 Setting this options also implicitly sets StrictSubnets.
1043
1044 @cindex UDPRcvBuf
1045 @item UDPRcvBuf = <bytes> (OS default)
1046 Sets the socket receive buffer size for the UDP socket, in bytes.
1047 If unset, the default buffer size will be used by the operating system.
1048
1049 @cindex UDPSndBuf
1050 @item UDPSndBuf = <bytes> Pq OS default
1051 Sets the socket send buffer size for the UDP socket, in bytes.
1052 If unset, the default buffer size will be used by the operating system.
1053
1054 @end table
1055
1056
1057 @c ==================================================================
1058 @node       Host configuration variables
1059 @subsection Host configuration variables
1060
1061 @table @asis
1062 @cindex Address
1063 @item Address = <@var{IP address}|@var{hostname}> [<port>] [recommended]
1064 This variable is only required if you want to connect to this host.  It
1065 must resolve to the external IP address where the host can be reached,
1066 not the one that is internal to the VPN.
1067 If no port is specified, the default Port is used.
1068
1069 @cindex Cipher
1070 @item Cipher = <@var{cipher}> (blowfish)
1071 The symmetric cipher algorithm used to encrypt UDP packets.
1072 Any cipher supported by OpenSSL is recognized.
1073 Furthermore, specifying "none" will turn off packet encryption.
1074 It is best to use only those ciphers which support CBC mode.
1075
1076 @cindex ClampMSS
1077 @item ClampMSS = <yes|no> (yes)
1078 This option specifies whether tinc should clamp the maximum segment size (MSS)
1079 of TCP packets to the path MTU. This helps in situations where ICMP
1080 Fragmentation Needed or Packet too Big messages are dropped by firewalls.
1081
1082 @cindex Compression
1083 @item Compression = <@var{level}> (0)
1084 This option sets the level of compression used for UDP packets.
1085 Possible values are 0 (off), 1 (fast zlib) and any integer up to 9 (best zlib),
1086 10 (fast lzo) and 11 (best lzo).
1087
1088 @cindex Digest
1089 @item Digest = <@var{digest}> (sha1)
1090 The digest algorithm used to authenticate UDP packets.
1091 Any digest supported by OpenSSL is recognized.
1092 Furthermore, specifying "none" will turn off packet authentication.
1093
1094 @cindex IndirectData
1095 @item IndirectData = <yes|no> (no)
1096 This option specifies whether other tinc daemons besides the one you
1097 specified with ConnectTo can make a direct connection to you.  This is
1098 especially useful if you are behind a firewall and it is impossible to
1099 make a connection from the outside to your tinc daemon.  Otherwise, it
1100 is best to leave this option out or set it to no.
1101
1102 @cindex MACLength
1103 @item MACLength = <@var{bytes}> (4)
1104 The length of the message authentication code used to authenticate UDP packets.
1105 Can be anything from 0
1106 up to the length of the digest produced by the digest algorithm.
1107
1108 @cindex PMTU
1109 @item PMTU = <@var{mtu}> (1514)
1110 This option controls the initial path MTU to this node.
1111
1112 @cindex PMTUDiscovery
1113 @item PMTUDiscovery = <yes|no> (yes)
1114 When this option is enabled, tinc will try to discover the path MTU to this node.
1115 After the path MTU has been discovered, it will be enforced on the VPN.
1116
1117 @cindex Port
1118 @item Port = <@var{port}> (655)
1119 This is the port this tinc daemon listens on.
1120 You can use decimal portnumbers or symbolic names (as listed in @file{/etc/services}).
1121
1122 @cindex PublicKey
1123 @item PublicKey = <@var{key}> [obsolete]
1124 This is the RSA public key for this host.
1125
1126 @cindex PublicKeyFile
1127 @item PublicKeyFile = <@var{path}> [obsolete]
1128 This is the full path name of the RSA public key file that was generated
1129 by @samp{tincd --generate-keys}.  It must be a full path, not a relative
1130 directory.
1131
1132 @cindex PEM format
1133 From version 1.0pre4 on tinc will store the public key directly into the
1134 host configuration file in PEM format, the above two options then are not
1135 necessary. Either the PEM format is used, or exactly
1136 @strong{one of the above two options} must be specified
1137 in each host configuration file, if you want to be able to establish a
1138 connection with that host.
1139
1140 @cindex Subnet
1141 @item Subnet = <@var{address}[/@var{prefixlength}[#@var{weight}]]>
1142 The subnet which this tinc daemon will serve.
1143 Tinc tries to look up which other daemon it should send a packet to by searching the appropiate subnet.
1144 If the packet matches a subnet,
1145 it will be sent to the daemon who has this subnet in his host configuration file.
1146 Multiple subnet lines can be specified for each daemon.
1147
1148 Subnets can either be single MAC, IPv4 or IPv6 addresses,
1149 in which case a subnet consisting of only that single address is assumed,
1150 or they can be a IPv4 or IPv6 network address with a prefixlength.
1151 Shorthand notations are not supported.
1152 For example, IPv4 subnets must be in a form like 192.168.1.0/24,
1153 where 192.168.1.0 is the network address and 24 is the number of bits set in the netmask.
1154 Note that subnets like 192.168.1.1/24 are invalid!
1155 Read a networking HOWTO/FAQ/guide if you don't understand this.
1156 IPv6 subnets are notated like fec0:0:0:1:0:0:0:0/64.
1157 MAC addresses are notated like 0:1a:2b:3c:4d:5e.
1158
1159 @cindex CIDR notation
1160 Prefixlength is the number of bits set to 1 in the netmask part; for
1161 example: netmask 255.255.255.0 would become /24, 255.255.252.0 becomes
1162 /22. This conforms to standard CIDR notation as described in
1163 @uref{ftp://ftp.isi.edu/in-notes/rfc1519.txt, RFC1519}
1164
1165 @cindex Subnet weight
1166 A Subnet can be given a weight to indicate its priority over identical Subnets
1167 owned by different nodes. The default weight is 10. Lower values indicate
1168 higher priority. Packets will be sent to the node with the highest priority,
1169 unless that node is not reachable, in which case the node with the next highest
1170 priority will be tried, and so on.
1171
1172 @cindex TCPonly
1173 @item TCPonly = <yes|no> (no) [deprecated]
1174 If this variable is set to yes, then the packets are tunnelled over a
1175 TCP connection instead of a UDP connection.  This is especially useful
1176 for those who want to run a tinc daemon from behind a masquerading
1177 firewall, or if UDP packet routing is disabled somehow.
1178 Setting this options also implicitly sets IndirectData.
1179
1180 Since version 1.0.10, tinc will automatically detect whether communication via
1181 UDP is possible or not.
1182 @end table
1183
1184
1185 @c ==================================================================
1186 @node       Scripts
1187 @subsection Scripts
1188
1189 @cindex scripts
1190 Apart from reading the server and host configuration files,
1191 tinc can also run scripts at certain moments.
1192 Under Windows (not Cygwin), the scripts should have the extension .bat.
1193
1194 @table @file
1195 @cindex tinc-up
1196 @item @value{sysconfdir}/tinc/@var{netname}/tinc-up
1197 This is the most important script.
1198 If it is present it will be executed right after the tinc daemon has been
1199 started and has connected to the virtual network device.
1200 It should be used to set up the corresponding network interface,
1201 but can also be used to start other things.
1202 Under Windows you can use the Network Connections control panel instead of creating this script.
1203
1204 @cindex tinc-down
1205 @item @value{sysconfdir}/tinc/@var{netname}/tinc-down
1206 This script is started right before the tinc daemon quits.
1207
1208 @item @value{sysconfdir}/tinc/@var{netname}/hosts/@var{host}-up
1209 This script is started when the tinc daemon with name @var{host} becomes reachable.
1210
1211 @item @value{sysconfdir}/tinc/@var{netname}/hosts/@var{host}-down
1212 This script is started when the tinc daemon with name @var{host} becomes unreachable.
1213
1214 @item @value{sysconfdir}/tinc/@var{netname}/host-up
1215 This script is started when any host becomes reachable.
1216
1217 @item @value{sysconfdir}/tinc/@var{netname}/host-down
1218 This script is started when any host becomes unreachable.
1219
1220 @item @value{sysconfdir}/tinc/@var{netname}/subnet-up
1221 This script is started when a Subnet becomes reachable.
1222 The Subnet and the node it belongs to are passed in environment variables.
1223
1224 @item @value{sysconfdir}/tinc/@var{netname}/subnet-down
1225 This script is started when a Subnet becomes unreachable.
1226 @end table
1227
1228 @cindex environment variables
1229 The scripts are started without command line arguments,
1230 but can make use of certain environment variables.
1231 Under UNIX like operating systems the names of environment variables must be preceded by a $ in scripts.
1232 Under Windows, in @file{.bat} files, they have to be put between % signs.
1233
1234 @table @env
1235 @cindex NETNAME
1236 @item NETNAME
1237 If a netname was specified, this environment variable contains it.
1238
1239 @cindex NAME
1240 @item NAME
1241 Contains the name of this tinc daemon.
1242
1243 @cindex DEVICE
1244 @item DEVICE
1245 Contains the name of the virtual network device that tinc uses.
1246
1247 @cindex INTERFACE
1248 @item INTERFACE
1249 Contains the name of the virtual network interface that tinc uses.
1250 This should be used for commands like ifconfig.
1251
1252 @cindex NODE
1253 @item NODE
1254 When a host becomes (un)reachable, this is set to its name.
1255 If a subnet becomes (un)reachable, this is set to the owner of that subnet.
1256
1257 @cindex REMOTEADDRESS
1258 @item REMOTEADDRESS
1259 When a host becomes (un)reachable, this is set to its real address.
1260
1261 @cindex REMOTEPORT
1262 @item REMOTEPORT
1263 When a host becomes (un)reachable,
1264 this is set to the port number it uses for communication with other tinc daemons.
1265
1266 @cindex SUBNET
1267 @item SUBNET
1268 When a subnet becomes (un)reachable, this is set to the subnet.
1269
1270 @cindex WEIGHT
1271 @item WEIGHT
1272 When a subnet becomes (un)reachable, this is set to the subnet weight.
1273
1274 @end table
1275
1276
1277 @c ==================================================================
1278 @node       How to configure
1279 @subsection How to configure
1280
1281 @subsubheading Step 1.  Creating the main configuration file
1282
1283 The main configuration file will be called @file{@value{sysconfdir}/tinc/@var{netname}/tinc.conf}.
1284 Adapt the following example to create a basic configuration file:
1285
1286 @example
1287 Name = @var{yourname}
1288 Device = @file{/dev/tap0}
1289 @end example
1290
1291 Then, if you know to which other tinc daemon(s) yours is going to connect,
1292 add `ConnectTo' values.
1293
1294 @subsubheading Step 2.  Creating your host configuration file
1295
1296 If you added a line containing `Name = yourname' in the main configuarion file,
1297 you will need to create a host configuration file @file{@value{sysconfdir}/tinc/@var{netname}/hosts/yourname}.
1298 Adapt the following example to create a host configuration file:
1299
1300 @example
1301 Address = your.real.hostname.org
1302 Subnet = 192.168.1.0/24
1303 @end example
1304
1305 You can also use an IP address instead of a hostname.
1306 The `Subnet' specifies the address range that is local for @emph{your part of the VPN only}.
1307 If you have multiple address ranges you can specify more than one `Subnet'.
1308 You might also need to add a `Port' if you want your tinc daemon to run on a different port number than the default (655).
1309
1310
1311 @c ==================================================================
1312 @node    Generating keypairs
1313 @section Generating keypairs
1314
1315 @cindex key generation
1316 Now that you have already created the main configuration file and your host configuration file,
1317 you can easily create a public/private keypair by entering the following command:
1318
1319 @example
1320 tincd -n @var{netname} -K
1321 @end example
1322
1323 Tinc will generate a public and a private key and ask you where to put them.
1324 Just press enter to accept the defaults.
1325
1326
1327 @c ==================================================================
1328 @node    Network interfaces
1329 @section Network interfaces
1330
1331 Before tinc can start transmitting data over the tunnel, it must
1332 set up the virtual network interface.
1333
1334 First, decide which IP addresses you want to have associated with these
1335 devices, and what network mask they must have.
1336
1337 Tinc will open a virtual network device (@file{/dev/tun}, @file{/dev/tap0} or similar),
1338 which will also create a network interface called something like @samp{tun0}, @samp{tap0}.
1339 If you are using the Linux tun/tap driver, the network interface will by default have the same name as the @var{netname}.
1340 Under Windows you can change the name of the network interface from the Network Connections control panel.
1341
1342 @cindex tinc-up
1343 You can configure the network interface by putting ordinary ifconfig, route, and other commands
1344 to a script named @file{@value{sysconfdir}/tinc/@var{netname}/tinc-up}.
1345 When tinc starts, this script will be executed. When tinc exits, it will execute the script named
1346 @file{@value{sysconfdir}/tinc/@var{netname}/tinc-down}, but normally you don't need to create that script.
1347
1348 An example @file{tinc-up} script:
1349
1350 @example
1351 #!/bin/sh
1352 ifconfig $INTERFACE 192.168.1.1 netmask 255.255.0.0
1353 @end example
1354
1355 This script gives the interface an IP address and a netmask.
1356 The kernel will also automatically add a route to this interface, so normally you don't need
1357 to add route commands to the @file{tinc-up} script.
1358 The kernel will also bring the interface up after this command.
1359 @cindex netmask
1360 The netmask is the mask of the @emph{entire} VPN network, not just your
1361 own subnet.
1362
1363 The exact syntax of the ifconfig and route commands differs from platform to platform.
1364 You can look up the commands for setting addresses and adding routes in @ref{Platform specific information},
1365 but it is best to consult the manpages of those utilities on your platform.
1366
1367
1368 @c ==================================================================
1369 @node    Example configuration
1370 @section Example configuration
1371
1372
1373 @cindex example
1374 Imagine the following situation.  Branch A of our example `company' wants to connect
1375 three branch offices in B, C and D using the Internet.  All four offices
1376 have a 24/7 connection to the Internet.
1377
1378 A is going to serve as the center of the network.  B and C will connect
1379 to A, and D will connect to C.  Each office will be assigned their own IP
1380 network, 10.x.0.0.
1381
1382 @example
1383 A: net 10.1.0.0 mask 255.255.0.0 gateway 10.1.54.1 internet IP 1.2.3.4
1384 B: net 10.2.0.0 mask 255.255.0.0 gateway 10.2.1.12 internet IP 2.3.4.5
1385 C: net 10.3.0.0 mask 255.255.0.0 gateway 10.3.69.254 internet IP 3.4.5.6
1386 D: net 10.4.0.0 mask 255.255.0.0 gateway 10.4.3.32 internet IP 4.5.6.7
1387 @end example
1388
1389 Here, ``gateway'' is the VPN IP address of the machine that is running the
1390 tincd, and ``internet IP'' is the IP address of the firewall, which does not
1391 need to run tincd, but it must do a port forwarding of TCP and UDP on port
1392 655 (unless otherwise configured).
1393
1394 In this example, it is assumed that eth0 is the interface that points to
1395 the inner (physical) LAN of the office, although this could also be the
1396 same as the interface that leads to the Internet.  The configuration of
1397 the real interface is also shown as a comment, to give you an idea of
1398 how these example host is set up. All branches use the netname `company'
1399 for this particular VPN.
1400
1401 @subsubheading For Branch A
1402
1403 @emph{BranchA} would be configured like this:
1404
1405 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1406
1407 @example
1408 # Real interface of internal network:
1409 # ifconfig eth0 10.1.54.1 netmask 255.255.0.0
1410
1411 ifconfig $INTERFACE 10.1.54.1 netmask 255.0.0.0
1412 @end example
1413
1414 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1415
1416 @example
1417 Name = BranchA
1418 Device = /dev/tap0
1419 @end example
1420
1421 On all hosts, @file{@value{sysconfdir}/tinc/company/hosts/BranchA} contains:
1422
1423 @example
1424 Subnet = 10.1.0.0/16
1425 Address = 1.2.3.4
1426
1427 -----BEGIN RSA PUBLIC KEY-----
1428 ...
1429 -----END RSA PUBLIC KEY-----
1430 @end example
1431
1432 Note that the IP addresses of eth0 and tap0 are the same.
1433 This is quite possible, if you make sure that the netmasks of the interfaces are different.
1434 It is in fact recommended to give both real internal network interfaces and tap interfaces the same IP address,
1435 since that will make things a lot easier to remember and set up.
1436
1437
1438 @subsubheading For Branch B
1439
1440 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1441
1442 @example
1443 # Real interface of internal network:
1444 # ifconfig eth0 10.2.43.8 netmask 255.255.0.0
1445
1446 ifconfig $INTERFACE 10.2.1.12 netmask 255.0.0.0
1447 @end example
1448
1449 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1450
1451 @example
1452 Name = BranchB
1453 ConnectTo = BranchA
1454 @end example
1455
1456 Note here that the internal address (on eth0) doesn't have to be the
1457 same as on the tap0 device.  Also, ConnectTo is given so that this node will
1458 always try to connect to BranchA.
1459
1460 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchB}:
1461
1462 @example
1463 Subnet = 10.2.0.0/16
1464 Address = 2.3.4.5
1465
1466 -----BEGIN RSA PUBLIC KEY-----
1467 ...
1468 -----END RSA PUBLIC KEY-----
1469 @end example
1470
1471
1472 @subsubheading For Branch C
1473
1474 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1475
1476 @example
1477 # Real interface of internal network:
1478 # ifconfig eth0 10.3.69.254 netmask 255.255.0.0
1479
1480 ifconfig $INTERFACE 10.3.69.254 netmask 255.0.0.0
1481 @end example
1482
1483 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1484
1485 @example
1486 Name = BranchC
1487 ConnectTo = BranchA
1488 Device = /dev/tap1
1489 @end example
1490
1491 C already has another daemon that runs on port 655, so they have to
1492 reserve another port for tinc. It knows the portnumber it has to listen on
1493 from it's own host configuration file.
1494
1495 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchC}:
1496
1497 @example
1498 Address = 3.4.5.6
1499 Subnet = 10.3.0.0/16
1500 Port = 2000
1501
1502 -----BEGIN RSA PUBLIC KEY-----
1503 ...
1504 -----END RSA PUBLIC KEY-----
1505 @end example
1506
1507
1508 @subsubheading For Branch D
1509
1510 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1511
1512 @example
1513 # Real interface of internal network:
1514 # ifconfig eth0 10.4.3.32 netmask 255.255.0.0
1515
1516 ifconfig $INTERFACE 10.4.3.32 netmask 255.0.0.0
1517 @end example
1518
1519 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1520
1521 @example
1522 Name = BranchD
1523 ConnectTo = BranchC
1524 Device = /dev/net/tun
1525 @end example
1526
1527 D will be connecting to C, which has a tincd running for this network on
1528 port 2000. It knows the port number from the host configuration file.
1529 Also note that since D uses the tun/tap driver, the network interface
1530 will not be called `tun' or `tap0' or something like that, but will
1531 have the same name as netname.
1532
1533 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchD}:
1534
1535 @example
1536 Subnet = 10.4.0.0/16
1537 Address = 4.5.6.7
1538
1539 -----BEGIN RSA PUBLIC KEY-----
1540 ...
1541 -----END RSA PUBLIC KEY-----
1542 @end example
1543
1544 @subsubheading Key files
1545
1546 A, B, C and D all have generated a public/private keypair with the following command:
1547
1548 @example
1549 tincd -n company -K
1550 @end example
1551
1552 The private key is stored in @file{@value{sysconfdir}/tinc/company/rsa_key.priv},
1553 the public key is put into the host configuration file in the @file{@value{sysconfdir}/tinc/company/hosts/} directory.
1554 During key generation, tinc automatically guesses the right filenames based on the -n option and
1555 the Name directive in the @file{tinc.conf} file (if it is available).
1556
1557 @subsubheading Starting
1558
1559 After each branch has finished configuration and they have distributed
1560 the host configuration files amongst them, they can start their tinc daemons.
1561 They don't necessarily have to wait for the other branches to have started
1562 their daemons, tinc will try connecting until they are available.
1563
1564
1565 @c ==================================================================
1566 @node    Running tinc
1567 @chapter Running tinc
1568
1569 If everything else is done, you can start tinc by typing the following command:
1570
1571 @example
1572 tincd -n @var{netname}
1573 @end example
1574
1575 @cindex daemon
1576 Tinc will detach from the terminal and continue to run in the background like a good daemon.
1577 If there are any problems however you can try to increase the debug level
1578 and look in the syslog to find out what the problems are.
1579
1580 @menu
1581 * Runtime options::
1582 * Signals::
1583 * Debug levels::
1584 * Solving problems::
1585 * Error messages::
1586 * Sending bug reports::
1587 @end menu
1588
1589
1590 @c ==================================================================
1591 @node    Runtime options
1592 @section Runtime options
1593
1594 Besides the settings in the configuration file, tinc also accepts some
1595 command line options.
1596
1597 @cindex command line
1598 @cindex runtime options
1599 @cindex options
1600 @c from the manpage
1601 @table @option
1602 @item -c, --config=@var{path}
1603 Read configuration options from the directory @var{path}.  The default is
1604 @file{@value{sysconfdir}/tinc/@var{netname}/}.
1605
1606 @item -D, --no-detach
1607 Don't fork and detach.
1608 This will also disable the automatic restart mechanism for fatal errors.
1609
1610 @cindex debug level
1611 @item -d, --debug=@var{level}
1612 Set debug level to @var{level}.  The higher the debug level, the more gets
1613 logged.  Everything goes via syslog.
1614
1615 @item -k, --kill[=@var{signal}]
1616 Attempt to kill a running tincd (optionally with the specified @var{signal} instead of SIGTERM) and exit.
1617 Use it in conjunction with the -n option to make sure you kill the right tinc daemon.
1618 Under native Windows the optional argument is ignored,
1619 the service will always be stopped and removed.
1620
1621 @item -n, --net=@var{netname}
1622 Use configuration for net @var{netname}.
1623 This will let tinc read all configuration files from
1624 @file{@value{sysconfdir}/tinc/@var{netname}/}.
1625 Specifying . for @var{netname} is the same as not specifying any @var{netname}.
1626 @xref{Multiple networks}.
1627
1628 @item -K, --generate-keys[=@var{bits}]
1629 Generate public/private keypair of @var{bits} length. If @var{bits} is not specified,
1630 2048 is the default. tinc will ask where you want to store the files,
1631 but will default to the configuration directory (you can use the -c or -n option
1632 in combination with -K). After that, tinc will quit.
1633
1634 @item -o, --option=[@var{HOST}.]@var{KEY}=@var{VALUE}
1635 Without specifying a @var{HOST}, this will set server configuration variable @var{KEY} to @var{VALUE}.
1636 If specified as @var{HOST}.@var{KEY}=@var{VALUE},
1637 this will set the host configuration variable @var{KEY} of the host named @var{HOST} to @var{VALUE}.
1638 This option can be used more than once to specify multiple configuration variables.
1639
1640 @item -L, --mlock
1641 Lock tinc into main memory.
1642 This will prevent sensitive data like shared private keys to be written to the system swap files/partitions.
1643
1644 @item --logfile[=@var{file}]
1645 Write log entries to a file instead of to the system logging facility.
1646 If @var{file} is omitted, the default is @file{@value{localstatedir}/log/tinc.@var{netname}.log}.
1647
1648 @item --pidfile=@var{file}
1649 Write PID to @var{file} instead of @file{@value{localstatedir}/run/tinc.@var{netname}.pid}.
1650
1651 @item --bypass-security
1652 Disables encryption and authentication.
1653 Only useful for debugging.
1654
1655 @item -R, --chroot
1656 Change process root directory to the directory where the config file is
1657 located (@file{@value{sysconfdir}/tinc/@var{netname}/} as determined by
1658 -n/--net option or as given by -c/--config option), for added security.
1659 The chroot is performed after all the initialization is done, after
1660 writing pid files and opening network sockets.
1661
1662 Note that this option alone does not do any good without -U/--user, below.
1663
1664 Note also that tinc can't run scripts anymore (such as tinc-down or host-up),
1665 unless it's setup to be runnable inside chroot environment.
1666
1667 @item -U, --user=@var{user}
1668 Switch to the given @var{user} after initialization, at the same time as
1669 chroot is performed (see --chroot above).  With this option tinc drops
1670 privileges, for added security.
1671
1672 @item --help
1673 Display a short reminder of these runtime options and terminate.
1674
1675 @item --version
1676 Output version information and exit.
1677
1678 @end table
1679
1680 @c ==================================================================
1681 @node    Signals
1682 @section Signals
1683
1684 @cindex signals
1685 You can also send the following signals to a running tincd process:
1686
1687 @c from the manpage
1688 @table @samp
1689
1690 @item ALRM
1691 Forces tinc to try to connect to all uplinks immediately.
1692 Usually tinc attempts to do this itself,
1693 but increases the time it waits between the attempts each time it failed,
1694 and if tinc didn't succeed to connect to an uplink the first time after it started,
1695 it defaults to the maximum time of 15 minutes.
1696
1697 @item HUP
1698 Partially rereads configuration files.
1699 Connections to hosts whose host config file are removed are closed.
1700 New outgoing connections specified in @file{tinc.conf} will be made.
1701 If the --logfile option is used, this will also close and reopen the log file,
1702 useful when log rotation is used.
1703
1704 @item INT
1705 Temporarily increases debug level to 5.
1706 Send this signal again to revert to the original level.
1707
1708 @item USR1
1709 Dumps the connection list to syslog.
1710
1711 @item USR2
1712 Dumps virtual network device statistics, all known nodes, edges and subnets to syslog.
1713
1714 @item WINCH
1715 Purges all information remembered about unreachable nodes.
1716
1717 @end table
1718
1719 @c ==================================================================
1720 @node    Debug levels
1721 @section Debug levels
1722
1723 @cindex debug levels
1724 The tinc daemon can send a lot of messages to the syslog.
1725 The higher the debug level, the more messages it will log.
1726 Each level inherits all messages of the previous level:
1727
1728 @c from the manpage
1729 @table @samp
1730
1731 @item 0
1732 This will log a message indicating tinc has started along with a version number.
1733 It will also log any serious error.
1734
1735 @item 1
1736 This will log all connections that are made with other tinc daemons.
1737
1738 @item 2
1739 This will log status and error messages from scripts and other tinc daemons.
1740
1741 @item 3
1742 This will log all requests that are exchanged with other tinc daemons. These include
1743 authentication, key exchange and connection list updates.
1744
1745 @item 4
1746 This will log a copy of everything received on the meta socket.
1747
1748 @item 5
1749 This will log all network traffic over the virtual private network.
1750
1751 @end table
1752
1753 @c ==================================================================
1754 @node    Solving problems
1755 @section Solving problems
1756
1757 If tinc starts without problems, but if the VPN doesn't work, you will have to find the cause of the problem.
1758 The first thing to do is to start tinc with a high debug level in the foreground,
1759 so you can directly see everything tinc logs:
1760
1761 @example
1762 tincd -n @var{netname} -d5 -D
1763 @end example
1764
1765 If tinc does not log any error messages, then you might want to check the following things:
1766
1767 @itemize
1768 @item @file{tinc-up} script
1769 Does this script contain the right commands?
1770 Normally you must give the interface the address of this host on the VPN, and the netmask must be big enough so that the entire VPN is covered.
1771
1772 @item Subnet
1773 Does the Subnet (or Subnets) in the host configuration file of this host match the portion of the VPN that belongs to this host?
1774
1775 @item Firewalls and NATs
1776 Do you have a firewall or a NAT device (a masquerading firewall or perhaps an ADSL router that performs masquerading)?
1777 If so, check that it allows TCP and UDP traffic on port 655.
1778 If it masquerades and the host running tinc is behind it, make sure that it forwards TCP and UDP traffic to port 655 to the host running tinc.
1779 You can add @samp{TCPOnly = yes} to your host config file to force tinc to only use a single TCP connection,
1780 this works through most firewalls and NATs. Since version 1.0.10, tinc will automatically fall back to TCP if direct communication via UDP is not possible.
1781
1782 @end itemize
1783
1784
1785 @c ==================================================================
1786 @node    Error messages
1787 @section Error messages
1788
1789 What follows is a list of the most common error messages you might find in the logs.
1790 Some of them will only be visible if the debug level is high enough.
1791
1792 @table @samp
1793 @item Could not open /dev/tap0: No such device
1794
1795 @itemize
1796 @item You forgot to `modprobe netlink_dev' or `modprobe ethertap'.
1797 @item You forgot to compile `Netlink device emulation' in the kernel.
1798 @end itemize
1799
1800 @item Can't write to /dev/net/tun: No such device
1801
1802 @itemize
1803 @item You forgot to `modprobe tun'.
1804 @item You forgot to compile `Universal TUN/TAP driver' in the kernel.
1805 @item The tun device is located somewhere else in @file{/dev/}.
1806 @end itemize
1807
1808 @item Network address and prefix length do not match!
1809
1810 @itemize
1811 @item The Subnet field must contain a @emph{network} address, trailing bits should be 0.
1812 @item If you only want to use one IP address, set the netmask to /32.
1813 @end itemize
1814
1815 @item Error reading RSA key file `rsa_key.priv': No such file or directory
1816
1817 @itemize
1818 @item You forgot to create a public/private keypair.
1819 @item Specify the complete pathname to the private key file with the @samp{PrivateKeyFile} option.
1820 @end itemize
1821
1822 @item Warning: insecure file permissions for RSA private key file `rsa_key.priv'!
1823
1824 @itemize
1825 @item The private key file is readable by users other than root.
1826 Use chmod to correct the file permissions.
1827 @end itemize
1828
1829 @item Creating metasocket failed: Address family not supported
1830
1831 @itemize
1832 @item By default tinc tries to create both IPv4 and IPv6 sockets.
1833 On some platforms this might not be implemented.
1834 If the logs show @samp{Ready} later on, then at least one metasocket was created,
1835 and you can ignore this message.
1836 You can add @samp{AddressFamily = ipv4} to @file{tinc.conf} to prevent this from happening.
1837 @end itemize
1838
1839 @item Cannot route packet: unknown IPv4 destination 1.2.3.4
1840
1841 @itemize
1842 @item You try to send traffic to a host on the VPN for which no Subnet is known.
1843 @item If it is a broadcast address (ending in .255), it probably is a samba server or a Windows host sending broadcast packets.
1844 You can ignore it.
1845 @end itemize
1846
1847 @item Cannot route packet: ARP request for unknown address 1.2.3.4
1848
1849 @itemize
1850 @item You try to send traffic to a host on the VPN for which no Subnet is known.
1851 @end itemize
1852
1853 @item Packet with destination 1.2.3.4 is looping back to us!
1854
1855 @itemize
1856 @item Something is not configured right. Packets are being sent out to the
1857 virtual network device, but according to the Subnet directives in your host configuration
1858 file, those packets should go to your own host. Most common mistake is that
1859 you have a Subnet line in your host configuration file with a prefix length which is
1860 just as large as the prefix of the virtual network interface. The latter should in almost all
1861 cases be larger. Rethink your configuration.
1862 Note that you will only see this message if you specified a debug
1863 level of 5 or higher!
1864 @item Chances are that a @samp{Subnet = ...} line in the host configuration file of this tinc daemon is wrong.
1865 Change it to a subnet that is accepted locally by another interface,
1866 or if that is not the case, try changing the prefix length into /32. 
1867 @end itemize
1868
1869 @item Node foo (1.2.3.4) is not reachable
1870
1871 @itemize
1872 @item Node foo does not have a connection anymore, its tinc daemon is not running or its connection to the Internet is broken.
1873 @end itemize
1874
1875 @item Received UDP packet from unknown source 1.2.3.4 (port 12345)
1876
1877 @itemize
1878 @item If you see this only sporadically, it is harmless and caused by a node sending packets using an old key.
1879 @end itemize
1880
1881 @item Got bad/bogus/unauthorized REQUEST from foo (1.2.3.4 port 12345)
1882
1883 @itemize
1884 @item Node foo does not have the right public/private keypair.
1885 Generate new keypairs and distribute them again.
1886 @item An attacker tries to gain access to your VPN.
1887 @item A network error caused corruption of metadata sent from foo.
1888 @end itemize
1889
1890 @end table
1891
1892 @c ==================================================================
1893 @node    Sending bug reports
1894 @section Sending bug reports
1895
1896 If you really can't find the cause of a problem, or if you suspect tinc is not working right,
1897 you can send us a bugreport, see @ref{Contact information}.
1898 Be sure to include the following information in your bugreport:
1899
1900 @itemize
1901 @item A clear description of what you are trying to achieve and what the problem is.
1902 @item What platform (operating system, version, hardware architecture) and which version of tinc you use.
1903 @item If compiling tinc fails, a copy of @file{config.log} and the error messages you get.
1904 @item Otherwise, a copy of @file{tinc.conf}, @file{tinc-up} and all files in the @file{hosts/} directory.
1905 @item The output of the commands @samp{ifconfig -a} and @samp{route -n} (or @samp{netstat -rn} if that doesn't work).
1906 @item The output of any command that fails to work as it should (like ping or traceroute).
1907 @end itemize
1908
1909 @c ==================================================================
1910 @node    Technical information
1911 @chapter Technical information
1912
1913
1914 @menu
1915 * The connection::
1916 * The meta-protocol::
1917 * Security::
1918 @end menu
1919
1920
1921 @c ==================================================================
1922 @node    The connection
1923 @section The connection
1924
1925 @cindex connection
1926 Tinc is a daemon that takes VPN data and transmit that to another host
1927 computer over the existing Internet infrastructure.
1928
1929 @menu
1930 * The UDP tunnel::
1931 * The meta-connection::
1932 @end menu
1933
1934
1935 @c ==================================================================
1936 @node    The UDP tunnel
1937 @subsection The UDP tunnel
1938
1939 @cindex virtual network device
1940 @cindex frame type
1941 The data itself is read from a character device file, the so-called
1942 @emph{virtual network device}.  This device is associated with a network
1943 interface.  Any data sent to this interface can be read from the device,
1944 and any data written to the device gets sent from the interface.
1945 There are two possible types of virtual network devices:
1946 `tun' style, which are point-to-point devices which can only handle IPv4 and/or IPv6 packets,
1947 and `tap' style, which are Ethernet devices and handle complete Ethernet frames.
1948
1949 So when tinc reads an Ethernet frame from the device, it determines its
1950 type. When tinc is in it's default routing mode, it can handle IPv4 and IPv6
1951 packets. Depending on the Subnet lines, it will send the packets off to their destination IP address.
1952 In the `switch' and `hub' mode, tinc will use broadcasts and MAC address discovery
1953 to deduce the destination of the packets.
1954 Since the latter modes only depend on the link layer information,
1955 any protocol that runs over Ethernet is supported (for instance IPX and Appletalk).
1956 However, only `tap' style devices provide this information.
1957
1958 After the destination has been determined,
1959 the packet will be compressed (optionally),
1960 a sequence number will be added to the packet,
1961 the packet will then be encrypted
1962 and a message authentication code will be appended.
1963
1964 @cindex encapsulating
1965 @cindex UDP
1966 When that is done, time has come to actually transport the
1967 packet to the destination computer.  We do this by sending the packet
1968 over an UDP connection to the destination host.  This is called
1969 @emph{encapsulating}, the VPN packet (though now encrypted) is
1970 encapsulated in another IP datagram.
1971
1972 When the destination receives this packet, the same thing happens, only
1973 in reverse.  So it checks the message authentication code, decrypts the contents of the UDP datagram,
1974 checks the sequence number
1975 and writes the decrypted information to its own virtual network device.
1976
1977 If the virtual network device is a `tun' device (a point-to-point tunnel),
1978 there is no problem for the kernel to accept a packet.
1979 However, if it is a `tap' device (this is the only available type on FreeBSD),
1980 the destination MAC address must match that of the virtual network interface.
1981 If tinc is in it's default routing mode, ARP does not work, so the correct destination MAC 
1982 can not be known by the sending host.
1983 Tinc solves this by letting the receiving end detect the MAC address of its own virtual network interface
1984 and overwriting the destination MAC address of the received packet.
1985
1986 In switch or hub modes ARP does work so the sender already knows the correct destination MAC address.
1987 In those modes every interface should have a unique MAC address, so make sure they are not the same.
1988 Because switch and hub modes rely on MAC addresses to function correctly,
1989 these modes cannot be used on the following operating systems which don't have a `tap' style virtual network device:
1990 OpenBSD, NetBSD, Darwin and Solaris.
1991
1992
1993 @c ==================================================================
1994 @node    The meta-connection
1995 @subsection The meta-connection
1996
1997 Having only a UDP connection available is not enough.  Though suitable
1998 for transmitting data, we want to be able to reliably send other
1999 information, such as routing and session key information to somebody.
2000
2001 @cindex TCP
2002 TCP is a better alternative, because it already contains protection
2003 against information being lost, unlike UDP.
2004
2005 So we establish two connections.  One for the encrypted VPN data, and one
2006 for other information, the meta-data.  Hence, we call the second
2007 connection the meta-connection.  We can now be sure that the
2008 meta-information doesn't get lost on the way to another computer.
2009
2010 @cindex data-protocol
2011 @cindex meta-protocol
2012 Like with any communication, we must have a protocol, so that everybody
2013 knows what everything stands for, and how she should react.  Because we
2014 have two connections, we also have two protocols.  The protocol used for
2015 the UDP data is the ``data-protocol,'' the other one is the
2016 ``meta-protocol.''
2017
2018 The reason we don't use TCP for both protocols is that UDP is much
2019 better for encapsulation, even while it is less reliable.  The real
2020 problem is that when TCP would be used to encapsulate a TCP stream
2021 that's on the private network, for every packet sent there would be
2022 three ACKs sent instead of just one.  Furthermore, if there would be
2023 a timeout, both TCP streams would sense the timeout, and both would
2024 start re-sending packets.
2025
2026
2027 @c ==================================================================
2028 @node    The meta-protocol
2029 @section The meta-protocol
2030
2031 The meta protocol is used to tie all tinc daemons together, and
2032 exchange information about which tinc daemon serves which virtual
2033 subnet.
2034
2035 The meta protocol consists of requests that can be sent to the other
2036 side.  Each request has a unique number and several parameters.  All
2037 requests are represented in the standard ASCII character set.  It is
2038 possible to use tools such as telnet or netcat to connect to a tinc
2039 daemon started with the --bypass-security option
2040 and to read and write requests by hand, provided that one
2041 understands the numeric codes sent.
2042
2043 The authentication scheme is described in @ref{Authentication protocol}. After a
2044 successful authentication, the server and the client will exchange all the
2045 information about other tinc daemons and subnets they know of, so that both
2046 sides (and all the other tinc daemons behind them) have their information
2047 synchronised.
2048
2049 @cindex ADD_EDGE
2050 @cindex ADD_SUBNET
2051 @example
2052 message
2053 ------------------------------------------------------------------
2054 ADD_EDGE node1 node2 21.32.43.54 655 222 0
2055           |     |        |       |   |  +-> options
2056           |     |        |       |   +----> weight
2057           |     |        |       +--------> UDP port of node2
2058           |     |        +----------------> real address of node2
2059           |     +-------------------------> name of destination node
2060           +-------------------------------> name of source node
2061
2062 ADD_SUBNET node 192.168.1.0/24
2063             |         |     +--> prefixlength
2064             |         +--------> network address
2065             +------------------> owner of this subnet
2066 ------------------------------------------------------------------
2067 @end example
2068
2069 The ADD_EDGE messages are to inform other tinc daemons that a connection between
2070 two nodes exist. The address of the destination node is available so that
2071 VPN packets can be sent directly to that node.
2072
2073 The ADD_SUBNET messages inform other tinc daemons that certain subnets belong
2074 to certain nodes. tinc will use it to determine to which node a VPN packet has
2075 to be sent.
2076
2077 @cindex DEL_EDGE
2078 @cindex DEL_SUBNET
2079 @example
2080 message
2081 ------------------------------------------------------------------
2082 DEL_EDGE node1 node2
2083            |     +----> name of destination node
2084            +----------> name of source node
2085
2086 DEL_SUBNET node 192.168.1.0/24
2087              |         |     +--> prefixlength
2088              |         +--------> network address
2089              +------------------> owner of this subnet
2090 ------------------------------------------------------------------
2091 @end example
2092
2093 In case a connection between two daemons is closed or broken, DEL_EDGE messages
2094 are sent to inform the other daemons of that fact. Each daemon will calculate a
2095 new route to the the daemons, or mark them unreachable if there isn't any.
2096
2097 @cindex REQ_KEY
2098 @cindex ANS_KEY
2099 @cindex KEY_CHANGED
2100 @example
2101 message
2102 ------------------------------------------------------------------
2103 REQ_KEY origin destination
2104            |       +--> name of the tinc daemon it wants the key from
2105            +----------> name of the daemon that wants the key      
2106
2107 ANS_KEY origin destination 4ae0b0a82d6e0078 91 64 4
2108            |       |       \______________/ |  |  +--> MAC length
2109            |       |               |        |  +-----> digest algorithm
2110            |       |               |        +--------> cipher algorithm
2111            |       |               +--> 128 bits key
2112            |       +--> name of the daemon that wants the key
2113            +----------> name of the daemon that uses this key
2114
2115 KEY_CHANGED origin
2116               +--> daemon that has changed it's packet key
2117 ------------------------------------------------------------------
2118 @end example
2119
2120 The keys used to encrypt VPN packets are not sent out directly. This is
2121 because it would generate a lot of traffic on VPNs with many daemons, and
2122 chances are that not every tinc daemon will ever send a packet to every
2123 other daemon. Instead, if a daemon needs a key it sends a request for it
2124 via the meta connection of the nearest hop in the direction of the
2125 destination.
2126
2127 @cindex PING
2128 @cindex PONG
2129 @example
2130 daemon  message
2131 ------------------------------------------------------------------
2132 origin  PING
2133 dest.   PONG
2134 ------------------------------------------------------------------
2135 @end example
2136
2137 There is also a mechanism to check if hosts are still alive. Since network
2138 failures or a crash can cause a daemon to be killed without properly
2139 shutting down the TCP connection, this is necessary to keep an up to date
2140 connection list. PINGs are sent at regular intervals, except when there
2141 is also some other traffic. A little bit of salt (random data) is added
2142 with each PING and PONG message, to make sure that long sequences of PING/PONG
2143 messages without any other traffic won't result in known plaintext.
2144
2145 This basically covers what is sent over the meta connection by tinc.
2146
2147
2148 @c ==================================================================
2149 @node    Security
2150 @section Security
2151
2152 @cindex TINC
2153 @cindex Cabal
2154 Tinc got its name from ``TINC,'' short for @emph{There Is No Cabal}; the
2155 alleged Cabal was/is an organisation that was said to keep an eye on the
2156 entire Internet.  As this is exactly what you @emph{don't} want, we named
2157 the tinc project after TINC.
2158
2159 @cindex SVPN
2160 But in order to be ``immune'' to eavesdropping, you'll have to encrypt
2161 your data.  Because tinc is a @emph{Secure} VPN (SVPN) daemon, it does
2162 exactly that: encrypt.
2163 Tinc by default uses blowfish encryption with 128 bit keys in CBC mode, 32 bit
2164 sequence numbers and 4 byte long message authentication codes to make sure
2165 eavesdroppers cannot get and cannot change any information at all from the
2166 packets they can intercept. The encryption algorithm and message authentication
2167 algorithm can be changed in the configuration. The length of the message
2168 authentication codes is also adjustable. The length of the key for the
2169 encryption algorithm is always the default length used by OpenSSL.
2170
2171 @menu
2172 * Authentication protocol::
2173 * Encryption of network packets::
2174 * Security issues::
2175 @end menu
2176
2177
2178 @c ==================================================================
2179 @node       Authentication protocol
2180 @subsection Authentication protocol
2181
2182 @cindex authentication
2183 A new scheme for authentication in tinc has been devised, which offers some
2184 improvements over the protocol used in 1.0pre2 and 1.0pre3. Explanation is
2185 below.
2186
2187 @cindex ID
2188 @cindex META_KEY
2189 @cindex CHALLENGE
2190 @cindex CHAL_REPLY
2191 @cindex ACK
2192 @example
2193 daemon  message
2194 --------------------------------------------------------------------------
2195 client  <attempts connection>
2196
2197 server  <accepts connection>
2198
2199 client  ID client 12
2200               |   +---> version
2201               +-------> name of tinc daemon
2202
2203 server  ID server 12
2204               |   +---> version
2205               +-------> name of tinc daemon
2206
2207 client  META_KEY 5f0823a93e35b69e...7086ec7866ce582b
2208                  \_________________________________/
2209                                  +-> RSAKEYLEN bits totally random string S1,
2210                                      encrypted with server's public RSA key
2211
2212 server  META_KEY 6ab9c1640388f8f0...45d1a07f8a672630
2213                  \_________________________________/
2214                                  +-> RSAKEYLEN bits totally random string S2,
2215                                      encrypted with client's public RSA key
2216
2217 From now on:
2218  - the client will symmetrically encrypt outgoing traffic using S1
2219  - the server will symmetrically encrypt outgoing traffic using S2
2220
2221 client  CHALLENGE da02add1817c1920989ba6ae2a49cecbda0
2222                   \_________________________________/
2223                                  +-> CHALLEN bits totally random string H1
2224
2225 server  CHALLENGE 57fb4b2ccd70d6bb35a64c142f47e61d57f
2226                   \_________________________________/
2227                                  +-> CHALLEN bits totally random string H2
2228
2229 client  CHAL_REPLY 816a86
2230                       +-> 160 bits SHA1 of H2
2231
2232 server  CHAL_REPLY 928ffe
2233                       +-> 160 bits SHA1 of H1
2234
2235 After the correct challenge replies are received, both ends have proved
2236 their identity. Further information is exchanged.
2237
2238 client  ACK 655 123 0
2239              |   |  +-> options
2240                  |   +----> estimated weight
2241                  +--------> listening port of client
2242
2243 server  ACK 655 321 0
2244              |   |  +-> options
2245                  |   +----> estimated weight
2246                  +--------> listening port of server
2247 --------------------------------------------------------------------------
2248 @end example
2249
2250 This new scheme has several improvements, both in efficiency and security.
2251
2252 First of all, the server sends exactly the same kind of messages over the wire
2253 as the client. The previous versions of tinc first authenticated the client,
2254 and then the server. This scheme even allows both sides to send their messages
2255 simultaneously, there is no need to wait for the other to send something first.
2256 This means that any calculations that need to be done upon sending or receiving
2257 a message can also be done in parallel. This is especially important when doing
2258 RSA encryption/decryption. Given that these calculations are the main part of
2259 the CPU time spent for the authentication, speed is improved by a factor 2.
2260
2261 Second, only one RSA encrypted message is sent instead of two. This reduces the
2262 amount of information attackers can see (and thus use for a cryptographic
2263 attack). It also improves speed by a factor two, making the total speedup a
2264 factor 4.
2265
2266 Third, and most important:
2267 The symmetric cipher keys are exchanged first, the challenge is done
2268 afterwards. In the previous authentication scheme, because a man-in-the-middle
2269 could pass the challenge/chal_reply phase (by just copying the messages between
2270 the two real tinc daemons), but no information was exchanged that was really
2271 needed to read the rest of the messages, the challenge/chal_reply phase was of
2272 no real use. The man-in-the-middle was only stopped by the fact that only after
2273 the ACK messages were encrypted with the symmetric cipher. Potentially, it
2274 could even send it's own symmetric key to the server (if it knew the server's
2275 public key) and read some of the metadata the server would send it (it was
2276 impossible for the mitm to read actual network packets though). The new scheme
2277 however prevents this.
2278
2279 This new scheme makes sure that first of all, symmetric keys are exchanged. The
2280 rest of the messages are then encrypted with the symmetric cipher. Then, each
2281 side can only read received messages if they have their private key. The
2282 challenge is there to let the other side know that the private key is really
2283 known, because a challenge reply can only be sent back if the challenge is
2284 decrypted correctly, and that can only be done with knowledge of the private
2285 key.
2286
2287 Fourth: the first thing that is sent via the symmetric cipher encrypted
2288 connection is a totally random string, so that there is no known plaintext (for
2289 an attacker) in the beginning of the encrypted stream.
2290
2291
2292 @c ==================================================================
2293 @node       Encryption of network packets
2294 @subsection Encryption of network packets
2295 @cindex encryption
2296
2297 A data packet can only be sent if the encryption key is known to both
2298 parties, and the connection is  activated. If the encryption key is not
2299 known, a request is sent to the destination using the meta connection
2300 to retrieve it. The packet is stored in a queue while waiting for the
2301 key to arrive.
2302
2303 @cindex UDP
2304 The UDP packet containing the network packet from the VPN has the following layout:
2305
2306 @example
2307 ... | IP header | UDP header | seqno | VPN packet | MAC | UDP trailer
2308                              \___________________/\_____/
2309                                        |             |
2310                                        V             +---> digest algorithm
2311                          Encrypted with symmetric cipher
2312 @end example
2313
2314 So, the entire VPN packet is encrypted using a symmetric cipher, including a 32 bits
2315 sequence number that is added in front of the actual VPN packet, to act as a unique
2316 IV for each packet and to prevent replay attacks. A message authentication code
2317 is added to the UDP packet to prevent alteration of packets. By default the
2318 first 4 bytes of the digest are used for this, but this can be changed using
2319 the MACLength configuration variable.
2320
2321 @c ==================================================================
2322 @node    Security issues
2323 @subsection Security issues
2324
2325 In August 2000, we discovered the existence of a security hole in all versions
2326 of tinc up to and including 1.0pre2. This had to do with the way we exchanged
2327 keys. Since then, we have been working on a new authentication scheme to make
2328 tinc as secure as possible. The current version uses the OpenSSL library and
2329 uses strong authentication with RSA keys.
2330
2331 On the 29th of December 2001, Jerome Etienne posted a security analysis of tinc
2332 1.0pre4. Due to a lack of sequence numbers and a message authentication code
2333 for each packet, an attacker could possibly disrupt certain network services or
2334 launch a denial of service attack by replaying intercepted packets. The current
2335 version adds sequence numbers and message authentication codes to prevent such
2336 attacks.
2337
2338 On the 15th of September 2003, Peter Gutmann posted a security analysis of tinc
2339 1.0.1. He argues that the 32 bit sequence number used by tinc is not a good IV,
2340 that tinc's default length of 4 bytes for the MAC is too short, and he doesn't
2341 like tinc's use of RSA during authentication. We do not know of a security hole
2342 in this version of tinc, but tinc's security is not as strong as TLS or IPsec.
2343 We will address these issues in tinc 2.0.
2344
2345 Cryptography is a hard thing to get right. We cannot make any
2346 guarantees. Time, review and feedback are the only things that can
2347 prove the security of any cryptographic product. If you wish to review
2348 tinc or give us feedback, you are stronly encouraged to do so.
2349
2350
2351 @c ==================================================================
2352 @node    Platform specific information
2353 @chapter Platform specific information
2354
2355 @menu
2356 * Interface configuration::
2357 * Routes::
2358 @end menu
2359
2360 @c ==================================================================
2361 @node    Interface configuration
2362 @section Interface configuration
2363
2364 When configuring an interface, one normally assigns it an address and a
2365 netmask.  The address uniquely identifies the host on the network attached to
2366 the interface.  The netmask, combined with the address, forms a subnet.  It is
2367 used to add a route to the routing table instructing the kernel to send all
2368 packets which fall into that subnet to that interface.  Because all packets for
2369 the entire VPN should go to the virtual network interface used by tinc, the
2370 netmask should be such that it encompasses the entire VPN.
2371
2372 For IPv4 addresses:
2373
2374 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
2375 @item Linux
2376 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2377 @item Linux iproute2
2378 @tab @code{ip addr add} @var{address}@code{/}@var{prefixlength} @code{dev} @var{interface}
2379 @item FreeBSD
2380 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2381 @item OpenBSD
2382 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2383 @item NetBSD
2384 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2385 @item Solaris
2386 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2387 @item Darwin (MacOS/X)
2388 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2389 @item Windows
2390 @tab @code{netsh interface ip set address} @var{interface} @code{static} @var{address} @var{netmask}
2391 @end multitable
2392
2393
2394 For IPv6 addresses:
2395
2396 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
2397 @item Linux
2398 @tab @code{ifconfig} @var{interface} @code{add} @var{address}@code{/}@var{prefixlength}
2399 @item FreeBSD
2400 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
2401 @item OpenBSD
2402 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
2403 @item NetBSD
2404 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
2405 @item Solaris
2406 @tab @code{ifconfig} @var{interface} @code{inet6 plumb up}
2407 @item
2408 @tab @code{ifconfig} @var{interface} @code{inet6 addif} @var{address} @var{address}
2409 @item Darwin (MacOS/X)
2410 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
2411 @item Windows
2412 @tab @code{netsh interface ipv6 add address} @var{interface} @code{static} @var{address}/@var{prefixlength}
2413 @end multitable
2414
2415
2416 @c ==================================================================
2417 @node    Routes
2418 @section Routes
2419
2420 In some cases it might be necessary to add more routes to the virtual network
2421 interface.  There are two ways to indicate which interface a packet should go
2422 to, one is to use the name of the interface itself, another way is to specify
2423 the (local) address that is assigned to that interface (@var{local_address}). The
2424 former way is unambiguous and therefore preferable, but not all platforms
2425 support this.
2426
2427 Adding routes to IPv4 subnets:
2428
2429 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
2430 @item Linux
2431 @tab @code{route add -net} @var{network_address} @code{netmask} @var{netmask} @var{interface}
2432 @item Linux iproute2
2433 @tab @code{ip route add} @var{network_address}@code{/}@var{prefixlength} @code{dev} @var{interface}
2434 @item FreeBSD
2435 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2436 @item OpenBSD
2437 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2438 @item NetBSD
2439 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2440 @item Solaris
2441 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address} @code{-interface}
2442 @item Darwin (MacOS/X)
2443 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2444 @item Windows
2445 @tab @code{netsh routing ip add persistentroute} @var{network_address} @var{netmask} @var{interface} @var{local_address}
2446 @end multitable
2447
2448 Adding routes to IPv6 subnets:
2449
2450 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
2451 @item Linux
2452 @tab @code{route add -A inet6} @var{network_address}@code{/}@var{prefixlength} @var{interface}
2453 @item Linux iproute2
2454 @tab @code{ip route add} @var{network_address}@code{/}@var{prefixlength} @code{dev} @var{interface}
2455 @item FreeBSD
2456 @tab @code{route add -inet6} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2457 @item OpenBSD
2458 @tab @code{route add -inet6} @var{network_address} @var{local_address} @code{-prefixlen} @var{prefixlength}
2459 @item NetBSD
2460 @tab @code{route add -inet6} @var{network_address} @var{local_address} @code{-prefixlen} @var{prefixlength}
2461 @item Solaris
2462 @tab @code{route add -inet6} @var{network_address}@code{/}@var{prefixlength} @var{local_address} @code{-interface}
2463 @item Darwin (MacOS/X)
2464 @tab ?
2465 @item Windows
2466 @tab @code{netsh interface ipv6 add route} @var{network address}/@var{prefixlength} @var{interface}
2467 @end multitable
2468
2469
2470 @c ==================================================================
2471 @node    About us
2472 @chapter About us
2473
2474
2475 @menu
2476 * Contact information::
2477 * Authors::
2478 @end menu
2479
2480
2481 @c ==================================================================
2482 @node    Contact information
2483 @section Contact information
2484
2485 @cindex website
2486 Tinc's website is at @url{http://www.tinc-vpn.org/},
2487 this server is located in the Netherlands.
2488
2489 @cindex IRC
2490 We have an IRC channel on the FreeNode and OFTC IRC networks. Connect to
2491 @uref{http://www.freenode.net/, irc.freenode.net}
2492 or
2493 @uref{http://www.oftc.net/, irc.oftc.net}
2494 and join channel #tinc.
2495
2496
2497 @c ==================================================================
2498 @node    Authors
2499 @section Authors
2500
2501 @table @asis
2502 @item Ivo Timmermans (zarq)
2503 @item Guus Sliepen (guus) (@email{guus@@tinc-vpn.org})
2504 @end table
2505
2506 We have received a lot of valuable input from users.  With their help,
2507 tinc has become the flexible and robust tool that it is today.  We have
2508 composed a list of contributions, in the file called @file{THANKS} in
2509 the source distribution.
2510
2511
2512 @c ==================================================================
2513 @node    Concept Index
2514 @unnumbered Concept Index
2515
2516 @c ==================================================================
2517 @printindex cp
2518
2519
2520 @c ==================================================================
2521 @contents
2522 @bye