Adding "conf.d" configuration dir support.
[tinc] / doc / tinc.texi
1 \input texinfo   @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename tinc.info
4 @settitle tinc Manual
5 @setchapternewpage odd
6 @c %**end of header
7
8 @include tincinclude.texi
9
10 @ifinfo
11 @dircategory Networking tools
12 @direntry
13 * tinc: (tinc).              The tinc Manual.
14 @end direntry
15
16 This is the info manual for @value{PACKAGE} version @value{VERSION}, a Virtual Private Network daemon.
17
18 Copyright @copyright{} 1998-2013 Ivo Timmermans,
19 Guus Sliepen <guus@@tinc-vpn.org> and
20 Wessel Dankers <wsl@@tinc-vpn.org>.
21
22 Permission is granted to make and distribute verbatim copies of this
23 manual provided the copyright notice and this permission notice are
24 preserved on all copies.
25
26 Permission is granted to copy and distribute modified versions of this
27 manual under the conditions for verbatim copying, provided that the
28 entire resulting derived work is distributed under the terms of a
29 permission notice identical to this one.
30
31 @end ifinfo
32
33 @afourpaper
34 @paragraphindent none
35 @finalout
36
37 @titlepage
38 @title tinc Manual
39 @subtitle Setting up a Virtual Private Network with tinc
40 @author Ivo Timmermans and Guus Sliepen
41
42 @page
43 @vskip 0pt plus 1filll
44 This is the info manual for @value{PACKAGE} version @value{VERSION}, a Virtual Private Network daemon.
45
46 Copyright @copyright{} 1998-2013 Ivo Timmermans,
47 Guus Sliepen <guus@@tinc-vpn.org> and
48 Wessel Dankers <wsl@@tinc-vpn.org>.
49
50 Permission is granted to make and distribute verbatim copies of this
51 manual provided the copyright notice and this permission notice are
52 preserved on all copies.
53
54 Permission is granted to copy and distribute modified versions of this
55 manual under the conditions for verbatim copying, provided that the
56 entire resulting derived work is distributed under the terms of a
57 permission notice identical to this one.
58
59 @end titlepage
60
61 @ifnottex
62 @c ==================================================================
63 @node Top
64 @top Top
65
66 @menu
67 * Introduction::
68 * Preparations::
69 * Installation::
70 * Configuration::
71 * Running tinc::
72 * Controlling tinc::
73 * Technical information::
74 * Platform specific information::
75 * About us::
76 * Concept Index::               All used terms explained
77 @end menu
78 @end ifnottex
79
80 @c ==================================================================
81 @node    Introduction
82 @chapter Introduction
83
84 @cindex tinc
85 Tinc is a Virtual Private Network (VPN) daemon that uses tunneling and
86 encryption to create a secure private network between hosts on the
87 Internet.
88
89 Because the tunnel appears to the IP level network code as a normal
90 network device, there is no need to adapt any existing software.
91 The encrypted tunnels allows VPN sites to share information with each other
92 over the Internet without exposing any information to others.
93
94 This document is the manual for tinc.  Included are chapters on how to
95 configure your computer to use tinc, as well as the configuration
96 process of tinc itself.
97
98 @menu
99 * Virtual Private Networks::
100 * tinc::                        About tinc
101 * Supported platforms::
102 @end menu
103
104 @c ==================================================================
105 @node    Virtual Private Networks
106 @section Virtual Private Networks
107
108 @cindex VPN
109 A Virtual Private Network or VPN is a network that can only be accessed
110 by a few elected computers that participate.  This goal is achievable in
111 more than just one way.
112
113 @cindex private
114 Private networks can consist of a single stand-alone Ethernet LAN.  Or
115 even two computers hooked up using a null-modem cable.  In these cases,
116 it is
117 obvious that the network is @emph{private}, no one can access it from the
118 outside.  But if your computers are linked to the Internet, the network
119 is not private anymore, unless one uses firewalls to block all private
120 traffic.  But then, there is no way to send private data to trusted
121 computers on the other end of the Internet.
122
123 @cindex virtual
124 This problem can be solved by using @emph{virtual} networks.  Virtual
125 networks can live on top of other networks, but they use encapsulation to
126 keep using their private address space so they do not interfere with
127 the Internet.  Mostly, virtual networks appear like a single LAN, even though
128 they can span the entire world.  But virtual networks can't be secured
129 by using firewalls, because the traffic that flows through it has to go
130 through the Internet, where other people can look at it.
131
132 As is the case with either type of VPN, anybody could eavesdrop.  Or
133 worse, alter data.  Hence it's probably advisable to encrypt the data
134 that flows over the network.
135
136 When one introduces encryption, we can form a true VPN.  Other people may
137 see encrypted traffic, but if they don't know how to decipher it (they
138 need to know the key for that), they cannot read the information that flows
139 through the VPN.  This is what tinc was made for.
140
141
142 @c ==================================================================
143 @node    tinc
144 @section tinc
145
146 @cindex vpnd
147 I really don't quite remember what got us started, but it must have been
148 Guus' idea.  He wrote a simple implementation (about 50 lines of C) that
149 used the ethertap device that Linux knows of since somewhere
150 about kernel 2.1.60.  It didn't work immediately and he improved it a
151 bit.  At this stage, the project was still simply called "vpnd".
152
153 Since then, a lot has changed---to say the least.
154
155 @cindex tincd
156 Tinc now supports encryption, it consists of a single daemon (tincd) for
157 both the receiving and sending end, it has become largely
158 runtime-configurable---in short, it has become a full-fledged
159 professional package.
160
161 @cindex traditional VPNs
162 @cindex scalability
163 Tinc also allows more than two sites to connect to eachother and form a single VPN.
164 Traditionally VPNs are created by making tunnels, which only have two endpoints.
165 Larger VPNs with more sites are created by adding more tunnels.
166 Tinc takes another approach: only endpoints are specified,
167 the software itself will take care of creating the tunnels.
168 This allows for easier configuration and improved scalability.
169
170 A lot can---and will be---changed. We have a number of things that we would like to
171 see in the future releases of tinc.  Not everything will be available in
172 the near future.  Our first objective is to make tinc work perfectly as
173 it stands, and then add more advanced features.
174
175 Meanwhile, we're always open-minded towards new ideas.  And we're
176 available too.
177
178
179 @c ==================================================================
180 @node    Supported platforms
181 @section Supported platforms
182
183 @cindex platforms
184 Tinc has been verified to work under Linux, FreeBSD, OpenBSD, NetBSD, MacOS/X (Darwin), Solaris, and Windows (both natively and in a Cygwin environment),
185 with various hardware architectures.  These are some of the platforms
186 that are supported by the universal tun/tap device driver or other virtual network device drivers.
187 Without such a driver, tinc will most
188 likely compile and run, but it will not be able to send or receive data
189 packets.
190
191 @cindex release
192 For an up to date list of supported platforms, please check the list on
193 our website:
194 @uref{http://www.tinc-vpn.org/platforms/}.
195
196 @c
197 @c
198 @c
199 @c
200 @c
201 @c
202 @c       Preparing your system
203 @c
204 @c
205 @c
206 @c
207 @c
208
209 @c ==================================================================
210 @node    Preparations
211 @chapter Preparations
212
213 This chapter contains information on how to prepare your system to
214 support tinc.
215
216 @menu
217 * Configuring the kernel::
218 * Libraries::
219 @end menu
220
221
222 @c ==================================================================
223 @node    Configuring the kernel
224 @section Configuring the kernel
225
226 @menu
227 * Configuration of Linux kernels::
228 * Configuration of FreeBSD kernels::
229 * Configuration of OpenBSD kernels::
230 * Configuration of NetBSD kernels::
231 * Configuration of Solaris kernels::
232 * Configuration of Darwin (MacOS/X) kernels::
233 * Configuration of Windows::
234 @end menu
235
236
237 @c ==================================================================
238 @node       Configuration of Linux kernels
239 @subsection Configuration of Linux kernels
240
241 @cindex Universal tun/tap
242 For tinc to work, you need a kernel that supports the Universal tun/tap device.
243 Most distributions come with kernels that already support this.
244 Here are the options you have to turn on when configuring a new kernel:
245
246 @example
247 Code maturity level options
248 [*] Prompt for development and/or incomplete code/drivers
249 Network device support
250 <M> Universal tun/tap device driver support
251 @end example
252
253 It's not necessary to compile this driver as a module, even if you are going to
254 run more than one instance of tinc.
255
256 If you decide to build the tun/tap driver as a kernel module, add these lines
257 to @file{/etc/modules.conf}:
258
259 @example
260 alias char-major-10-200 tun
261 @end example
262
263
264 @c ==================================================================
265 @node       Configuration of FreeBSD kernels
266 @subsection Configuration of FreeBSD kernels
267
268 For FreeBSD version 4.1 and higher, tun and tap drivers are included in the default kernel configuration.
269 The tap driver can be loaded with @code{kldload if_tap}, or by adding @code{if_tap_load="YES"} to @file{/boot/loader.conf}.
270
271
272 @c ==================================================================
273 @node       Configuration of OpenBSD kernels
274 @subsection Configuration of OpenBSD kernels
275
276 For OpenBSD version 2.9 and higher,
277 the tun driver is included in the default kernel configuration.
278 There is also a kernel patch from @uref{http://diehard.n-r-g.com/stuff/openbsd/}
279 which adds a tap device to OpenBSD which should work with tinc,
280 but with recent versions of OpenBSD,
281 a tun device can act as a tap device by setting the link0 option with ifconfig.
282
283
284 @c ==================================================================
285 @node       Configuration of NetBSD kernels
286 @subsection Configuration of NetBSD kernels
287
288 For NetBSD version 1.5.2 and higher,
289 the tun driver is included in the default kernel configuration.
290
291 Tunneling IPv6 may not work on NetBSD's tun device.
292
293
294 @c ==================================================================
295 @node       Configuration of Solaris kernels
296 @subsection Configuration of Solaris kernels
297
298 For Solaris 8 (SunOS 5.8) and higher,
299 the tun driver may or may not be included in the default kernel configuration.
300 If it isn't, the source can be downloaded from @uref{http://vtun.sourceforge.net/tun/}.
301 For x86 and sparc64 architectures, precompiled versions can be found at @uref{http://www.monkey.org/~dugsong/fragroute/}.
302 If the @file{net/if_tun.h} header file is missing, install it from the source package.
303
304
305 @c ==================================================================
306 @node       Configuration of Darwin (MacOS/X) kernels
307 @subsection Configuration of Darwin (MacOS/X) kernels
308
309 Tinc on Darwin relies on a tunnel driver for its data acquisition from the kernel.
310 Tinc supports either the driver from @uref{http://tuntaposx.sourceforge.net/},
311 which supports both tun and tap style devices,
312 and also the driver from from @uref{http://chrisp.de/en/projects/tunnel.html}.
313 The former driver is recommended.
314 The tunnel driver must be loaded before starting tinc with the following command:
315
316 @example
317 kmodload tunnel
318 @end example
319
320
321 @c ==================================================================
322 @node       Configuration of Windows
323 @subsection Configuration of Windows
324
325 You will need to install the latest TAP-Win32 driver from OpenVPN.
326 You can download it from @uref{http://openvpn.sourceforge.net}.
327 Using the Network Connections control panel,
328 configure the TAP-Win32 network interface in the same way as you would do from the tinc-up script,
329 as explained in the rest of the documentation.
330
331
332 @c ==================================================================
333 @node    Libraries
334 @section Libraries
335
336 @cindex requirements
337 @cindex libraries
338 Before you can configure or build tinc, you need to have the OpenSSL,
339 zlib and lzo libraries installed on your system.  If you try to configure tinc without
340 having them installed, configure will give you an error message, and stop.
341
342 @menu
343 * OpenSSL::
344 * zlib::
345 * lzo::
346 * libcurses::
347 * libreadline::
348 @end menu
349
350
351 @c ==================================================================
352 @node       OpenSSL
353 @subsection OpenSSL
354
355 @cindex OpenSSL
356 For all cryptography-related functions, tinc uses the functions provided
357 by the OpenSSL library.
358
359 If this library is not installed, you wil get an error when configuring
360 tinc for build.  Support for running tinc with other cryptographic libraries
361 installed @emph{may} be added in the future.
362
363 You can use your operating system's package manager to install this if
364 available.  Make sure you install the development AND runtime versions
365 of this package.
366
367 If you have to install OpenSSL manually, you can get the source code
368 from @url{http://www.openssl.org/}.  Instructions on how to configure,
369 build and install this package are included within the package.  Please
370 make sure you build development and runtime libraries (which is the
371 default).
372
373 If you installed the OpenSSL libraries from source, it may be necessary
374 to let configure know where they are, by passing configure one of the
375 --with-openssl-* parameters.
376
377 @example
378 --with-openssl=DIR      OpenSSL library and headers prefix
379 --with-openssl-include=DIR OpenSSL headers directory
380                         (Default is OPENSSL_DIR/include)
381 --with-openssl-lib=DIR  OpenSSL library directory
382                         (Default is OPENSSL_DIR/lib)
383 @end example
384
385
386 @subsubheading License
387
388 @cindex license
389 The complete source code of tinc is covered by the GNU GPL version 2.
390 Since the license under which OpenSSL is distributed is not directly
391 compatible with the terms of the GNU GPL
392 @uref{http://www.openssl.org/support/faq.html#LEGAL2}, we
393 include an exemption to the GPL (see also the file COPYING.README) to allow
394 everyone to create a statically or dynamically linked executable:
395
396 @quotation
397 This program is released under the GPL with the additional exemption
398 that compiling, linking, and/or using OpenSSL is allowed.  You may
399 provide binary packages linked to the OpenSSL libraries, provided that
400 all other requirements of the GPL are met.
401 @end quotation
402
403 Since the LZO library used by tinc is also covered by the GPL,
404 we also present the following exemption:
405
406 @quotation
407 Hereby I grant a special exception to the tinc VPN project
408 (http://www.tinc-vpn.org/) to link the LZO library with the OpenSSL library
409 (http://www.openssl.org).
410
411 Markus F.X.J. Oberhumer
412 @end quotation
413
414
415 @c ==================================================================
416 @node       zlib
417 @subsection zlib
418
419 @cindex zlib
420 For the optional compression of UDP packets, tinc uses the functions provided
421 by the zlib library.
422
423 If this library is not installed, you wil get an error when running the
424 configure script.  You can either install the zlib library, or disable support
425 for zlib compression by using the "--disable-zlib" option when running the
426 configure script. Note that if you disable support for zlib, the resulting
427 binary will not work correctly on VPNs where zlib compression is used.
428
429 You can use your operating system's package manager to install this if
430 available.  Make sure you install the development AND runtime versions
431 of this package.
432
433 If you have to install zlib manually, you can get the source code
434 from @url{http://www.gzip.org/zlib/}.  Instructions on how to configure,
435 build and install this package are included within the package.  Please
436 make sure you build development and runtime libraries (which is the
437 default).
438
439
440 @c ==================================================================
441 @node       lzo
442 @subsection lzo
443
444 @cindex lzo
445 Another form of compression is offered using the LZO library.
446
447 If this library is not installed, you wil get an error when running the
448 configure script.  You can either install the LZO library, or disable support
449 for LZO compression by using the "--disable-lzo" option when running the
450 configure script. Note that if you disable support for LZO, the resulting
451 binary will not work correctly on VPNs where LZO compression is used.
452
453 You can use your operating system's package manager to install this if
454 available.  Make sure you install the development AND runtime versions
455 of this package.
456
457 If you have to install lzo manually, you can get the source code
458 from @url{http://www.oberhumer.com/opensource/lzo/}.  Instructions on how to configure,
459 build and install this package are included within the package.  Please
460 make sure you build development and runtime libraries (which is the
461 default).
462
463
464 @c ==================================================================
465 @node       libcurses
466 @subsection libcurses
467
468 @cindex libcurses
469 For the "tinc top" command, tinc requires a curses library.
470
471 If this library is not installed, you wil get an error when running the
472 configure script.  You can either install a suitable curses library, or disable
473 all functionality that depends on a curses library by using the
474 "--disable-curses" option when running the configure script.
475
476 There are several curses libraries. It is recommended that you install
477 "ncurses" (@url{http://invisible-island.net/ncurses/}),
478 however other curses libraries should also work.
479 In particular, "PDCurses" (@url{http://pdcurses.sourceforge.net/})
480 is recommended if you want to compile tinc for Windows.
481
482 You can use your operating system's package manager to install this if
483 available. Make sure you install the development AND runtime versions
484 of this package.
485
486
487 @c ==================================================================
488 @node       libreadline
489 @subsection libreadline
490
491 @cindex libreadline
492 For the "tinc" command's shell functionality, tinc uses the readline library.
493
494 If this library is not installed, you wil get an error when running the
495 configure script.  You can either install a suitable readline library, or
496 disable all functionality that depends on a readline library by using the
497 "--disable-readline" option when running the configure script.
498
499 You can use your operating system's package manager to install this if
500 available.  Make sure you install the development AND runtime versions
501 of this package.
502
503 If you have to install libreadline manually, you can get the source code from
504 @url{http://www.gnu.org/software/readline/}. Instructions on how to configure,
505 build and install this package are included within the package.  Please make
506 sure you build development and runtime libraries (which is the default).
507
508
509 @c
510 @c
511 @c
512 @c      Installing tinc
513 @c
514 @c
515 @c
516 @c
517
518 @c ==================================================================
519 @node    Installation
520 @chapter Installation
521
522 If you use Debian, you may want to install one of the
523 precompiled packages for your system.  These packages are equipped with
524 system startup scripts and sample configurations.
525
526 If you cannot use one of the precompiled packages, or you want to compile tinc
527 for yourself, you can use the source.  The source is distributed under
528 the GNU General Public License (GPL).  Download the source from the
529 @uref{http://www.tinc-vpn.org/download/, download page}, which has
530 the checksums of these files listed; you may wish to check these with
531 md5sum before continuing.
532
533 Tinc comes in a convenient autoconf/automake package, which you can just
534 treat the same as any other package.  Which is just untar it, type
535 `./configure' and then `make'.
536 More detailed instructions are in the file @file{INSTALL}, which is
537 included in the source distribution.
538
539 @menu
540 * Building and installing tinc::
541 * System files::
542 @end menu
543
544
545 @c ==================================================================
546 @node    Building and installing tinc
547 @section Building and installing tinc
548
549 Detailed instructions on configuring the source, building tinc and installing tinc
550 can be found in the file called @file{INSTALL}.
551
552 @cindex binary package
553 If you happen to have a binary package for tinc for your distribution,
554 you can use the package management tools of that distribution to install tinc.
555 The documentation that comes along with your distribution will tell you how to do that.
556
557 @menu
558 * Darwin (MacOS/X) build environment::
559 * Cygwin (Windows) build environment::
560 * MinGW (Windows) build environment::
561 @end menu
562
563
564 @c ==================================================================
565 @node       Darwin (MacOS/X) build environment
566 @subsection Darwin (MacOS/X) build environment
567
568 In order to build tinc on Darwin, you need to install the MacOS/X Developer Tools
569 from @uref{http://developer.apple.com/tools/macosxtools.html} and
570 a recent version of Fink from @uref{http://www.finkproject.org/}.
571
572 After installation use fink to download and install the following packages:
573 autoconf25, automake, dlcompat, m4, openssl, zlib and lzo.
574
575 @c ==================================================================
576 @node       Cygwin (Windows) build environment
577 @subsection Cygwin (Windows) build environment
578
579 If Cygwin hasn't already been installed, install it directly from
580 @uref{http://www.cygwin.com/}.
581
582 When tinc is compiled in a Cygwin environment, it can only be run in this environment,
583 but all programs, including those started outside the Cygwin environment, will be able to use the VPN.
584 It will also support all features.
585
586 @c ==================================================================
587 @node       MinGW (Windows) build environment
588 @subsection MinGW (Windows) build environment
589
590 You will need to install the MinGW environment from @uref{http://www.mingw.org}.
591
592 When tinc is compiled using MinGW it runs natively under Windows,
593 it is not necessary to keep MinGW installed.
594
595 When detaching, tinc will install itself as a service,
596 which will be restarted automatically after reboots.
597
598
599 @c ==================================================================
600 @node    System files
601 @section System files
602
603 Before you can run tinc, you must make sure you have all the needed
604 files on your system.
605
606 @menu
607 * Device files::
608 * Other files::
609 @end menu
610
611
612 @c ==================================================================
613 @node       Device files
614 @subsection Device files
615
616 @cindex device files
617 Most operating systems nowadays come with the necessary device files by default,
618 or they have a mechanism to create them on demand.
619
620 If you use Linux and do not have udev installed,
621 you may need to create the following device file if it does not exist:
622
623 @example
624 mknod -m 600 /dev/net/tun c 10 200
625 @end example
626
627
628 @c ==================================================================
629 @node       Other files
630 @subsection Other files
631
632 @subsubheading @file{/etc/networks}
633
634 You may add a line to @file{/etc/networks} so that your VPN will get a
635 symbolic name.  For example:
636
637 @example
638 myvpn 10.0.0.0
639 @end example
640
641 @subsubheading @file{/etc/services}
642
643 @cindex port numbers
644 You may add this line to @file{/etc/services}.  The effect is that you
645 may supply a @samp{tinc} as a valid port number to some programs.  The
646 number 655 is registered with the IANA.
647
648 @example
649 tinc            655/tcp    TINC
650 tinc            655/udp    TINC
651 #                          Ivo Timmermans <ivo@@tinc-vpn.org>
652 @end example
653
654
655 @c
656 @c
657 @c
658 @c
659 @c         Configuring tinc
660 @c
661 @c
662 @c
663 @c
664
665
666 @c ==================================================================
667 @node    Configuration
668 @chapter Configuration
669
670 @menu
671 * Configuration introduction::
672 * Multiple networks::
673 * How connections work::
674 * Configuration files::
675 * Network interfaces::
676 * Example configuration::
677 @end menu
678
679 @c ==================================================================
680 @node    Configuration introduction
681 @section Configuration introduction
682
683 Before actually starting to configure tinc and editing files,
684 make sure you have read this entire section so you know what to expect.
685 Then, make it clear to yourself how you want to organize your VPN:
686 What are the nodes (computers running tinc)?
687 What IP addresses/subnets do they have?
688 What is the network mask of the entire VPN?
689 Do you need special firewall rules?
690 Do you have to set up masquerading or forwarding rules?
691 Do you want to run tinc in router mode or switch mode?
692 These questions can only be answered by yourself,
693 you will not find the answers in this documentation.
694 Make sure you have an adequate understanding of networks in general.
695 @cindex Network Administrators Guide
696 A good resource on networking is the
697 @uref{http://www.tldp.org/LDP/nag2/, Linux Network Administrators Guide}.
698
699 If you have everything clearly pictured in your mind,
700 proceed in the following order:
701 First, create the initial configuration files and public/private keypairs using the following command:
702 @example
703 tinc -n @var{NETNAME} init @var{NAME}
704 @end example
705 Second, use @samp{tinc -n @var{NETNAME} add ...} to further configure tinc.
706 Finally, export your host configuration file using @samp{tinc -n @var{NETNAME} export} and send it to those
707 people or computers you want tinc to connect to.
708 They should send you their host configuration file back, which you can import using @samp{tinc -n @var{NETNAME} import}.
709
710 These steps are described in the subsections below.
711
712
713 @c ==================================================================
714 @node    Multiple networks
715 @section Multiple networks
716
717 @cindex multiple networks
718 @cindex netname
719
720 In order to allow you to run more than one tinc daemon on one computer,
721 for instance if your computer is part of more than one VPN,
722 you can assign a @var{netname} to your VPN.
723 It is not required if you only run one tinc daemon,
724 it doesn't even have to be the same on all the nodes of your VPN,
725 but it is recommended that you choose one anyway.
726
727 We will asume you use a netname throughout this document.
728 This means that you call tinc with the -n argument,
729 which will specify the netname.
730
731 The effect of this option is that tinc will set its configuration
732 root to @file{@value{sysconfdir}/tinc/@var{netname}/}, where @var{netname} is your argument to the -n option.
733 You will also notice that log messages it appears in syslog as coming from @file{tinc.@var{netname}},
734 and on Linux, unless specified otherwise, the name of the virtual network interface will be the same as the network name.
735
736 However, it is not strictly necessary that you call tinc with the -n
737 option. If you don not use it, the network name will just be empty, and
738 tinc will look for files in @file{@value{sysconfdir}/tinc/} instead of
739 @file{@value{sysconfdir}/tinc/@var{netname}/};
740 the configuration file will then be @file{@value{sysconfdir}/tinc/tinc.conf},
741 and the host configuration files are expected to be in @file{@value{sysconfdir}/tinc/hosts/}.
742
743
744 @c ==================================================================
745 @node    How connections work
746 @section How connections work
747
748 When tinc starts up, it parses the command-line options and then
749 reads in the configuration file tinc.conf.
750 If it sees one or more  `ConnectTo' values pointing to other tinc daemons in that file,
751 it will try to connect to those other daemons.
752 Whether this succeeds or not and whether `ConnectTo' is specified or not,
753 tinc will listen for incoming connection from other deamons.
754 If you did specify a `ConnectTo' value and the other side is not responding,
755 tinc will keep retrying.
756 This means that once started, tinc will stay running until you tell it to stop,
757 and failures to connect to other tinc daemons will not stop your tinc daemon
758 for trying again later.
759 This means you don't have to intervene if there are temporary network problems.
760
761 @cindex client
762 @cindex server
763 There is no real distinction between a server and a client in tinc.
764 If you wish, you can view a tinc daemon without a `ConnectTo' value as a server,
765 and one which does specify such a value as a client.
766 It does not matter if two tinc daemons have a `ConnectTo' value pointing to each other however.
767
768 Connections specified using `ConnectTo' are so-called meta-connections.
769 Tinc daemons exchange information about all other daemon they know about via these meta-connections.
770 After learning about all the daemons in the VPN,
771 tinc will create other connections as necessary in order to communicate with them.
772 For example, if there are three daemons named A, B and C, and A has @samp{ConnectTo = B} in its tinc.conf file,
773 and C has @samp{ConnectTo = B} in its tinc.conf file, then A will learn about C from B,
774 and will be able to exchange VPN packets with C without the need to have @samp{ConnectTo = C} in its tinc.conf file.
775
776 It could be that some daemons are located behind a Network Address Translation (NAT) device, or behind a firewall.
777 In the above scenario with three daemons, if A and C are behind a NAT,
778 B will automatically help A and C punch holes through their NAT,
779 in a way similar to the STUN protocol, so that A and C can still communicate with each other directly.
780 It is not always possible to do this however, and firewalls might also prevent direct communication.
781 In that case, VPN packets between A and C will be forwarded by B.
782
783 In effect, all nodes in the VPN will be able to talk to each other, as long as
784 their is a path of meta-connections between them, and whenever possible, two
785 nodes will communicate with each other directly.
786
787
788 @c ==================================================================
789 @node    Configuration files
790 @section Configuration files
791
792 The actual configuration of the daemon is done in the file
793 @file{@value{sysconfdir}/tinc/@var{netname}/tinc.conf} and at least one other file in the directory
794 @file{@value{sysconfdir}/tinc/@var{netname}/hosts/}.
795
796 An optionnal directory @file{@value{sysconfdir}/tinc/@var{netname}/conf.d} can be added from which
797 any .conf file will be read.
798
799 These file consists of comments (lines started with a #) or assignments
800 in the form of
801
802 @example
803 Variable = Value.
804 @end example
805
806 The variable names are case insensitive, and any spaces, tabs, newlines
807 and carriage returns are ignored.  Note: it is not required that you put
808 in the `=' sign, but doing so improves readability.  If you leave it
809 out, remember to replace it with at least one space character.
810
811 The server configuration is complemented with host specific configuration (see
812 the next section). Although all host configuration options for the local node
813 listed in this document can also be put in
814 @file{@value{sysconfdir}/tinc/@var{netname}/tinc.conf}, it is recommended to
815 put host specific configuration options in the host configuration file, as this
816 makes it easy to exchange with other nodes.
817
818 You can edit the config file manually, but it is recommended that you use
819 the tinc command to change configuration variables for you.
820
821 In the following two subsections all valid variables are listed in alphabetical order.
822 The default value is given between parentheses,
823 other comments are between square brackets.
824
825 @menu
826 * Main configuration variables::
827 * Host configuration variables::
828 * Scripts::
829 * How to configure::
830 @end menu
831
832
833 @c ==================================================================
834 @node       Main configuration variables
835 @subsection Main configuration variables
836
837 @table @asis
838 @cindex AddressFamily
839 @item AddressFamily = <ipv4|ipv6|any> (any)
840 This option affects the address family of listening and outgoing sockets.
841 If any is selected, then depending on the operating system
842 both IPv4 and IPv6 or just IPv6 listening sockets will be created.
843
844 @cindex AutoConnect
845 @item AutoConnect = <count> (0) [experimental]
846 If set to a non-zero value,
847 tinc will try to only have count meta connections to other nodes,
848 by automatically making or breaking connections to known nodes.
849 Higher values increase redundancy but also increase meta data overhead.
850 When using this option, a good value is 3.
851
852 @cindex BindToAddress
853 @item BindToAddress = <@var{address}> [<@var{port}>]
854 If your computer has more than one IPv4 or IPv6 address, tinc
855 will by default listen on all of them for incoming connections.
856 Multiple BindToAddress variables may be specified,
857 in which case listening sockets for each specified address are made.
858
859 If no @var{port} is specified, the socket will be bound to the port specified by the Port option,
860 or to port 655 if neither is given.
861 To only bind to a specific port but not to a specific address, use "*" for the @var{address}.
862
863 @cindex BindToInterface
864 @item BindToInterface = <@var{interface}> [experimental]
865 If you have more than one network interface in your computer, tinc will
866 by default listen on all of them for incoming connections.  It is
867 possible to bind tinc to a single interface like eth0 or ppp0 with this
868 variable.
869
870 This option may not work on all platforms.
871 Also, on some platforms it will not actually bind to an interface,
872 but rather to the address that the interface has at the moment a socket is created.
873
874 @cindex Broadcast
875 @item Broadcast = <no | mst | direct> (mst) [experimental]
876 This option selects the way broadcast packets are sent to other daemons.
877 @emph{NOTE: all nodes in a VPN must use the same Broadcast mode, otherwise routing loops can form.}
878
879 @table @asis
880 @item no
881 Broadcast packets are never sent to other nodes.
882
883 @item mst
884 Broadcast packets are sent and forwarded via the VPN's Minimum Spanning Tree.
885 This ensures broadcast packets reach all nodes.
886
887 @item direct
888 Broadcast packets are sent directly to all nodes that can be reached directly.
889 Broadcast packets received from other nodes are never forwarded.
890 If the IndirectData option is also set, broadcast packets will only be sent to nodes which we have a meta connection to.
891 @end table
892
893 @cindex ConnectTo
894 @item ConnectTo = <@var{name}>
895 Specifies which other tinc daemon to connect to on startup.
896 Multiple ConnectTo variables may be specified,
897 in which case outgoing connections to each specified tinc daemon are made.
898 The names should be known to this tinc daemon
899 (i.e., there should be a host configuration file for the name on the ConnectTo line).
900
901 If you don't specify a host with ConnectTo,
902 tinc won't try to connect to other daemons at all,
903 and will instead just listen for incoming connections.
904
905 @cindex DecrementTTL
906 @item DecrementTTL = <yes | no> (no) [experimental]
907 When enabled, tinc will decrement the Time To Live field in IPv4 packets, or the Hop Limit field in IPv6 packets,
908 before forwarding a received packet to the virtual network device or to another node,
909 and will drop packets that have a TTL value of zero,
910 in which case it will send an ICMP Time Exceeded packet back.
911
912 Do not use this option if you use switch mode and want to use IPv6.
913
914 @cindex Device
915 @item Device = <@var{device}> (@file{/dev/tap0}, @file{/dev/net/tun} or other depending on platform)
916 The virtual network device to use.
917 Tinc will automatically detect what kind of device it is.
918 Note that you can only use one device per daemon.
919 Under Windows, use @var{Interface} instead of @var{Device}.
920 Note that you can only use one device per daemon.
921 See also @ref{Device files}.
922
923 @cindex DeviceType
924 @item DeviceType = <@var{type}> (platform dependent)
925 The type of the virtual network device.
926 Tinc will normally automatically select the right type of tun/tap interface, and this option should not be used.
927 However, this option can be used to select one of the special interface types, if support for them is compiled in.
928
929 @table @asis
930 @cindex dummy
931 @item dummy
932 Use a dummy interface.
933 No packets are ever read or written to a virtual network device.
934 Useful for testing, or when setting up a node that only forwards packets for other nodes.
935
936 @cindex raw_socket
937 @item raw_socket
938 Open a raw socket, and bind it to a pre-existing
939 @var{Interface} (eth0 by default).
940 All packets are read from this interface.
941 Packets received for the local node are written to the raw socket.
942 However, at least on Linux, the operating system does not process IP packets destined for the local host.
943
944 @cindex multicast
945 @item multicast
946 Open a multicast UDP socket and bind it to the address and port (separated by spaces) and optionally a TTL value specified using @var{Device}.
947 Packets are read from and written to this multicast socket.
948 This can be used to connect to UML, QEMU or KVM instances listening on the same multicast address.
949 Do NOT connect multiple tinc daemons to the same multicast address, this will very likely cause routing loops.
950 Also note that this can cause decrypted VPN packets to be sent out on a real network if misconfigured.
951
952 @cindex UML
953 @item uml (not compiled in by default)
954 Create a UNIX socket with the filename specified by
955 @var{Device}, or @file{@value{localstatedir}/run/@var{netname}.umlsocket}
956 if not specified.
957 Tinc will wait for a User Mode Linux instance to connect to this socket.
958
959 @cindex VDE
960 @item vde (not compiled in by default)
961 Uses the libvdeplug library to connect to a Virtual Distributed Ethernet switch,
962 using the UNIX socket specified by
963 @var{Device}, or @file{@value{localstatedir}/run/vde.ctl}
964 if not specified.
965 @end table
966
967 Also, in case tinc does not seem to correctly interpret packets received from the virtual network device,
968 it can be used to change the way packets are interpreted:
969
970 @table @asis
971 @item tun (BSD and Linux)
972 Set type to tun.
973 Depending on the platform, this can either be with or without an address family header (see below).
974
975 @cindex tunnohead
976 @item tunnohead (BSD)
977 Set type to tun without an address family header.
978 Tinc will expect packets read from the virtual network device to start with an IP header.
979 On some platforms IPv6 packets cannot be read from or written to the device in this mode.
980
981 @cindex tunifhead
982 @item tunifhead (BSD)
983 Set type to tun with an address family header.
984 Tinc will expect packets read from the virtual network device
985 to start with a four byte header containing the address family,
986 followed by an IP header.
987 This mode should support both IPv4 and IPv6 packets.
988
989 @item tap (BSD and Linux)
990 Set type to tap.
991 Tinc will expect packets read from the virtual network device
992 to start with an Ethernet header.
993 @end table
994
995 @cindex DirectOnly
996 @item DirectOnly = <yes|no> (no) [experimental]
997 When this option is enabled, packets that cannot be sent directly to the destination node,
998 but which would have to be forwarded by an intermediate node, are dropped instead.
999 When combined with the IndirectData option,
1000 packets for nodes for which we do not have a meta connection with are also dropped.
1001
1002 @cindex ECDSAPrivateKeyFile
1003 @item ECDSAPrivateKeyFile = <@var{path}> (@file{@value{sysconfdir}/tinc/@var{netname}/ecdsa_key.priv})
1004 The file in which the private ECDSA key of this tinc daemon resides.
1005 This is only used if ExperimentalProtocol is enabled.
1006
1007 @cindex ExperimentalProtocol
1008 @item ExperimentalProtocol = <yes|no> (yes)
1009 When this option is enabled, the SPTPS protocol will be used when connecting to nodes that also support it.
1010 Ephemeral ECDH will be used for key exchanges,
1011 and ECDSA will be used instead of RSA for authentication.
1012 When enabled, an ECDSA key must have been generated before with
1013 @samp{tinc generate-ecdsa-keys}.
1014
1015 @cindex Forwarding
1016 @item Forwarding = <off|internal|kernel> (internal) [experimental]
1017 This option selects the way indirect packets are forwarded.
1018
1019 @table @asis
1020 @item off
1021 Incoming packets that are not meant for the local node,
1022 but which should be forwarded to another node, are dropped.
1023
1024 @item internal
1025 Incoming packets that are meant for another node are forwarded by tinc internally.
1026
1027 This is the default mode, and unless you really know you need another forwarding mode, don't change it.
1028
1029 @item kernel
1030 Incoming packets are always sent to the TUN/TAP device, even if the packets are not for the local node.
1031 This is less efficient, but allows the kernel to apply its routing and firewall rules on them,
1032 and can also help debugging.
1033 @end table
1034
1035 @cindex Hostnames
1036 @item Hostnames = <yes|no> (no)
1037 This option selects whether IP addresses (both real and on the VPN)
1038 should be resolved.  Since DNS lookups are blocking, it might affect
1039 tinc's efficiency, even stopping the daemon for a few seconds everytime
1040 it does a lookup if your DNS server is not responding.
1041
1042 This does not affect resolving hostnames to IP addresses from the
1043 configuration file, but whether hostnames should be resolved while logging.
1044
1045 @cindex Interface
1046 @item Interface = <@var{interface}>
1047 Defines the name of the interface corresponding to the virtual network device.
1048 Depending on the operating system and the type of device this may or may not actually set the name of the interface.
1049 Under Windows, this variable is used to select which network interface will be used.
1050 If you specified a Device, this variable is almost always already correctly set.
1051
1052 @cindex LocalDiscovery
1053 @item LocalDiscovery = <yes | no> (no)
1054 When enabled, tinc will try to detect peers that are on the same local network.
1055 This will allow direct communication using LAN addresses, even if both peers are behind a NAT
1056 and they only ConnectTo a third node outside the NAT,
1057 which normally would prevent the peers from learning each other's LAN address.
1058
1059 Currently, local discovery is implemented by sending broadcast packets to the LAN during path MTU discovery.
1060 This feature may not work in all possible situations.
1061
1062 @cindex LocalDiscoveryAddress
1063 @item LocalDiscoveryAddress <@var{address}>
1064 If this variable is specified, local discovery packets are sent to the given @var{address}.
1065
1066 @cindex Mode
1067 @item Mode = <router|switch|hub> (router)
1068 This option selects the way packets are routed to other daemons.
1069
1070 @table @asis
1071 @cindex router
1072 @item router
1073 In this mode Subnet
1074 variables in the host configuration files will be used to form a routing table.
1075 Only packets of routable protocols (IPv4 and IPv6) are supported in this mode.
1076
1077 This is the default mode, and unless you really know you need another mode, don't change it.
1078
1079 @cindex switch
1080 @item switch
1081 In this mode the MAC addresses of the packets on the VPN will be used to
1082 dynamically create a routing table just like an Ethernet switch does.
1083 Unicast, multicast and broadcast packets of every protocol that runs over Ethernet are supported in this mode
1084 at the cost of frequent broadcast ARP requests and routing table updates.
1085
1086 This mode is primarily useful if you want to bridge Ethernet segments.
1087
1088 @cindex hub
1089 @item hub
1090 This mode is almost the same as the switch mode, but instead
1091 every packet will be broadcast to the other daemons
1092 while no routing table is managed.
1093 @end table
1094
1095 @cindex KeyExpire
1096 @item KeyExpire = <@var{seconds}> (3600)
1097 This option controls the time the encryption keys used to encrypt the data
1098 are valid.  It is common practice to change keys at regular intervals to
1099 make it even harder for crackers, even though it is thought to be nearly
1100 impossible to crack a single key.
1101
1102 @cindex MACExpire
1103 @item MACExpire = <@var{seconds}> (600)
1104 This option controls the amount of time MAC addresses are kept before they are removed.
1105 This only has effect when Mode is set to "switch".
1106
1107 @cindex MaxConnectionBurst
1108 @item MaxConnectionBurst = <@var{count}> (100)
1109 This option controls how many connections tinc accepts in quick succession.
1110 If there are more connections than the given number in a short time interval,
1111 tinc will reduce the number of accepted connections to only one per second,
1112 until the burst has passed.
1113
1114 @cindex Name
1115 @item Name = <@var{name}> [required]
1116 This is a symbolic name for this connection.
1117 The name should consist only of alfanumeric and underscore characters (a-z, A-Z, 0-9 and _), and is case sensitive.
1118
1119 If Name starts with a $, then the contents of the environment variable that follows will be used.
1120 In that case, invalid characters will be converted to underscores.
1121 If Name is $HOST, but no such environment variable exist,
1122 the hostname will be read using the gethostname() system call.
1123
1124 @cindex PingInterval
1125 @item PingInterval = <@var{seconds}> (60)
1126 The number of seconds of inactivity that tinc will wait before sending a
1127 probe to the other end.
1128
1129 @cindex PingTimeout
1130 @item PingTimeout = <@var{seconds}> (5)
1131 The number of seconds to wait for a response to pings or to allow meta
1132 connections to block. If the other end doesn't respond within this time,
1133 the connection is terminated, and the others will be notified of this.
1134
1135 @cindex PriorityInheritance
1136 @item PriorityInheritance = <yes|no> (no) [experimental]
1137 When this option is enabled the value of the TOS field of tunneled IPv4 packets
1138 will be inherited by the UDP packets that are sent out.
1139
1140 @cindex PrivateKey
1141 @item PrivateKey = <@var{key}> [obsolete]
1142 This is the RSA private key for tinc. However, for safety reasons it is
1143 advised to store private keys of any kind in separate files. This prevents
1144 accidental eavesdropping if you are editting the configuration file.
1145
1146 @cindex PrivateKeyFile
1147 @item PrivateKeyFile = <@var{path}> (@file{@value{sysconfdir}/tinc/@var{netname}/rsa_key.priv})
1148 This is the full path name of the RSA private key file that was
1149 generated by @samp{tinc generate-keys}.  It must be a full path, not a
1150 relative directory.
1151
1152 @cindex ProcessPriority
1153 @item ProcessPriority = <low|normal|high>
1154 When this option is used the priority of the tincd process will be adjusted.
1155 Increasing the priority may help to reduce latency and packet loss on the VPN.
1156
1157 @cindex Proxy
1158 @item Proxy = socks4 | socks5 | http | exec @var{...} [experimental]
1159 Use a proxy when making outgoing connections.
1160 The following proxy types are currently supported:
1161
1162 @table @asis
1163 @cindex socks4
1164 @item socks4 <@var{address}> <@var{port}> [<@var{username}>]
1165 Connects to the proxy using the SOCKS version 4 protocol.
1166 Optionally, a @var{username} can be supplied which will be passed on to the proxy server.
1167
1168 @cindex socks5
1169 @item socks5 <@var{address}> <@var{port}> [<@var{username}> <@var{password}>]
1170 Connect to the proxy using the SOCKS version 5 protocol.
1171 If a @var{username} and @var{password} are given, basic username/password authentication will be used,
1172 otherwise no authentication will be used.
1173
1174 @cindex http
1175 @item http <@var{address}> <@var{port}>
1176 Connects to the proxy and sends a HTTP CONNECT request.
1177
1178 @cindex exec
1179 @item exec <@var{command}>
1180 Executes the given command which should set up the outgoing connection.
1181 The environment variables @env{NAME}, @env{NODE}, @env{REMOTEADDRES} and @env{REMOTEPORT} are available.
1182 @end table
1183
1184 @cindex ReplayWindow
1185 @item ReplayWindow = <bytes> (16)
1186 This is the size of the replay tracking window for each remote node, in bytes.
1187 The window is a bitfield which tracks 1 packet per bit, so for example
1188 the default setting of 16 will track up to 128 packets in the window. In high
1189 bandwidth scenarios, setting this to a higher value can reduce packet loss from
1190 the interaction of replay tracking with underlying real packet loss and/or
1191 reordering. Setting this to zero will disable replay tracking completely and
1192 pass all traffic, but leaves tinc vulnerable to replay-based attacks on your
1193 traffic.
1194
1195 @cindex StrictSubnets
1196 @item StrictSubnets = <yes|no> (no) [experimental]
1197 When this option is enabled tinc will only use Subnet statements which are
1198 present in the host config files in the local
1199 @file{@value{sysconfdir}/tinc/@var{netname}/hosts/} directory.
1200
1201 @cindex TunnelServer
1202 @item TunnelServer = <yes|no> (no) [experimental]
1203 When this option is enabled tinc will no longer forward information between other tinc daemons,
1204 and will only allow connections with nodes for which host config files are present in the local
1205 @file{@value{sysconfdir}/tinc/@var{netname}/hosts/} directory.
1206 Setting this options also implicitly sets StrictSubnets.
1207
1208 @cindex UDPRcvBuf
1209 @item UDPRcvBuf = <bytes> (OS default)
1210 Sets the socket receive buffer size for the UDP socket, in bytes.
1211 If unset, the default buffer size will be used by the operating system.
1212
1213 @cindex UDPSndBuf
1214 @item UDPSndBuf = <bytes> Pq OS default
1215 Sets the socket send buffer size for the UDP socket, in bytes.
1216 If unset, the default buffer size will be used by the operating system.
1217
1218 @end table
1219
1220
1221 @c ==================================================================
1222 @node       Host configuration variables
1223 @subsection Host configuration variables
1224
1225 @table @asis
1226 @cindex Address
1227 @item Address = <@var{IP address}|@var{hostname}> [<port>] [recommended]
1228 This variable is only required if you want to connect to this host.  It
1229 must resolve to the external IP address where the host can be reached,
1230 not the one that is internal to the VPN.
1231 If no port is specified, the default Port is used.
1232 Multiple Address variables can be specified, in which case each address will be
1233 tried until a working connection has been established.
1234
1235 @cindex Cipher
1236 @item Cipher = <@var{cipher}> (blowfish)
1237 The symmetric cipher algorithm used to encrypt UDP packets using the legacy protocol.
1238 Any cipher supported by OpenSSL is recognized.
1239 Furthermore, specifying "none" will turn off packet encryption.
1240 It is best to use only those ciphers which support CBC mode.
1241 This option has no effect for connections using the SPTPS protocol, which always use AES-256-CTR.
1242
1243 @cindex ClampMSS
1244 @item ClampMSS = <yes|no> (yes)
1245 This option specifies whether tinc should clamp the maximum segment size (MSS)
1246 of TCP packets to the path MTU. This helps in situations where ICMP
1247 Fragmentation Needed or Packet too Big messages are dropped by firewalls.
1248
1249 @cindex Compression
1250 @item Compression = <@var{level}> (0)
1251 This option sets the level of compression used for UDP packets.
1252 Possible values are 0 (off), 1 (fast zlib) and any integer up to 9 (best zlib),
1253 10 (fast lzo) and 11 (best lzo).
1254
1255 @cindex Digest
1256 @item Digest = <@var{digest}> (sha1)
1257 The digest algorithm used to authenticate UDP packets using the legacy protocol.
1258 Any digest supported by OpenSSL is recognized.
1259 Furthermore, specifying "none" will turn off packet authentication.
1260 This option has no effect for connections using the SPTPS protocol, which always use HMAC-SHA-256.
1261
1262 @cindex IndirectData
1263 @item IndirectData = <yes|no> (no)
1264 When set to yes, other nodes which do not already have a meta connection to you
1265 will not try to establish direct communication with you.
1266 It is best to leave this option out or set it to no.
1267
1268 @cindex MACLength
1269 @item MACLength = <@var{bytes}> (4)
1270 The length of the message authentication code used to authenticate UDP packets using the legacy protocol.
1271 Can be anything from 0
1272 up to the length of the digest produced by the digest algorithm.
1273 This option has no effect for connections using the SPTPS protocol, which never truncate MACs.
1274
1275 @cindex PMTU
1276 @item PMTU = <@var{mtu}> (1514)
1277 This option controls the initial path MTU to this node.
1278
1279 @cindex PMTUDiscovery
1280 @item PMTUDiscovery = <yes|no> (yes)
1281 When this option is enabled, tinc will try to discover the path MTU to this node.
1282 After the path MTU has been discovered, it will be enforced on the VPN.
1283
1284 @cindex Port
1285 @item Port = <@var{port}> (655)
1286 This is the port this tinc daemon listens on.
1287 You can use decimal portnumbers or symbolic names (as listed in @file{/etc/services}).
1288
1289 @cindex PublicKey
1290 @item PublicKey = <@var{key}> [obsolete]
1291 This is the RSA public key for this host.
1292
1293 @cindex PublicKeyFile
1294 @item PublicKeyFile = <@var{path}> [obsolete]
1295 This is the full path name of the RSA public key file that was generated
1296 by @samp{tinc generate-keys}.  It must be a full path, not a relative
1297 directory.
1298
1299 @cindex PEM format
1300 From version 1.0pre4 on tinc will store the public key directly into the
1301 host configuration file in PEM format, the above two options then are not
1302 necessary. Either the PEM format is used, or exactly
1303 @strong{one of the above two options} must be specified
1304 in each host configuration file, if you want to be able to establish a
1305 connection with that host.
1306
1307 @cindex Subnet
1308 @item Subnet = <@var{address}[/@var{prefixlength}[#@var{weight}]]>
1309 The subnet which this tinc daemon will serve.
1310 Tinc tries to look up which other daemon it should send a packet to by searching the appropiate subnet.
1311 If the packet matches a subnet,
1312 it will be sent to the daemon who has this subnet in his host configuration file.
1313 Multiple subnet lines can be specified for each daemon.
1314
1315 Subnets can either be single MAC, IPv4 or IPv6 addresses,
1316 in which case a subnet consisting of only that single address is assumed,
1317 or they can be a IPv4 or IPv6 network address with a prefixlength.
1318 For example, IPv4 subnets must be in a form like 192.168.1.0/24,
1319 where 192.168.1.0 is the network address and 24 is the number of bits set in the netmask.
1320 Note that subnets like 192.168.1.1/24 are invalid!
1321 Read a networking HOWTO/FAQ/guide if you don't understand this.
1322 IPv6 subnets are notated like fec0:0:0:1::/64.
1323 MAC addresses are notated like 0:1a:2b:3c:4d:5e.
1324
1325 @cindex CIDR notation
1326 Prefixlength is the number of bits set to 1 in the netmask part; for
1327 example: netmask 255.255.255.0 would become /24, 255.255.252.0 becomes
1328 /22. This conforms to standard CIDR notation as described in
1329 @uref{http://www.ietf.org/rfc/rfc1519.txt, RFC1519}
1330
1331 A Subnet can be given a weight to indicate its priority over identical Subnets
1332 owned by different nodes. The default weight is 10. Lower values indicate
1333 higher priority. Packets will be sent to the node with the highest priority,
1334 unless that node is not reachable, in which case the node with the next highest
1335 priority will be tried, and so on.
1336
1337 @cindex TCPonly
1338 @item TCPonly = <yes|no> (no)
1339 If this variable is set to yes, then the packets are tunnelled over a
1340 TCP connection instead of a UDP connection.  This is especially useful
1341 for those who want to run a tinc daemon from behind a masquerading
1342 firewall, or if UDP packet routing is disabled somehow.
1343 Setting this options also implicitly sets IndirectData.
1344 @end table
1345
1346
1347 @c ==================================================================
1348 @node       Scripts
1349 @subsection Scripts
1350
1351 @cindex scripts
1352 Apart from reading the server and host configuration files,
1353 tinc can also run scripts at certain moments.
1354 Under Windows (not Cygwin), the scripts should have the extension @file{.bat} or @file{.cmd}.
1355
1356 @table @file
1357 @cindex tinc-up
1358 @item @value{sysconfdir}/tinc/@var{netname}/tinc-up
1359 This is the most important script.
1360 If it is present it will be executed right after the tinc daemon has been
1361 started and has connected to the virtual network device.
1362 It should be used to set up the corresponding network interface,
1363 but can also be used to start other things.
1364 Under Windows you can use the Network Connections control panel instead of creating this script.
1365
1366 @cindex tinc-down
1367 @item @value{sysconfdir}/tinc/@var{netname}/tinc-down
1368 This script is started right before the tinc daemon quits.
1369
1370 @item @value{sysconfdir}/tinc/@var{netname}/hosts/@var{host}-up
1371 This script is started when the tinc daemon with name @var{host} becomes reachable.
1372
1373 @item @value{sysconfdir}/tinc/@var{netname}/hosts/@var{host}-down
1374 This script is started when the tinc daemon with name @var{host} becomes unreachable.
1375
1376 @item @value{sysconfdir}/tinc/@var{netname}/host-up
1377 This script is started when any host becomes reachable.
1378
1379 @item @value{sysconfdir}/tinc/@var{netname}/host-down
1380 This script is started when any host becomes unreachable.
1381
1382 @item @value{sysconfdir}/tinc/@var{netname}/subnet-up
1383 This script is started when a Subnet becomes reachable.
1384 The Subnet and the node it belongs to are passed in environment variables.
1385
1386 @item @value{sysconfdir}/tinc/@var{netname}/subnet-down
1387 This script is started when a Subnet becomes unreachable.
1388
1389 @item @value{sysconfdir}/tinc/@var{netname}/invitation-created
1390 This script is started when a new invitation has been created.
1391
1392 @item @value{sysconfdir}/tinc/@var{netname}/invitation-accepted
1393 This script is started when an invitation has been used.
1394
1395 @end table
1396
1397 @cindex environment variables
1398 The scripts are started without command line arguments,
1399 but can make use of certain environment variables.
1400 Under UNIX like operating systems the names of environment variables must be preceded by a $ in scripts.
1401 Under Windows, in @file{.bat} or @file{.cmd} files, they have to be put between % signs.
1402
1403 @table @env
1404 @cindex NETNAME
1405 @item NETNAME
1406 If a netname was specified, this environment variable contains it.
1407
1408 @cindex NAME
1409 @item NAME
1410 Contains the name of this tinc daemon.
1411
1412 @cindex DEVICE
1413 @item DEVICE
1414 Contains the name of the virtual network device that tinc uses.
1415
1416 @cindex INTERFACE
1417 @item INTERFACE
1418 Contains the name of the virtual network interface that tinc uses.
1419 This should be used for commands like ifconfig.
1420
1421 @cindex NODE
1422 @item NODE
1423 When a host becomes (un)reachable, this is set to its name.
1424 If a subnet becomes (un)reachable, this is set to the owner of that subnet.
1425
1426 @cindex REMOTEADDRESS
1427 @item REMOTEADDRESS
1428 When a host becomes (un)reachable, this is set to its real address.
1429
1430 @cindex REMOTEPORT
1431 @item REMOTEPORT
1432 When a host becomes (un)reachable,
1433 this is set to the port number it uses for communication with other tinc daemons.
1434
1435 @cindex SUBNET
1436 @item SUBNET
1437 When a subnet becomes (un)reachable, this is set to the subnet.
1438
1439 @cindex WEIGHT
1440 @item WEIGHT
1441 When a subnet becomes (un)reachable, this is set to the subnet weight.
1442
1443 @cindex INVITATION_FILE
1444 @item INVITATION_FILE
1445 When the @file{invitation-created} script is called,
1446 this is set to the file where the invitation details will be stored.
1447
1448 @cindex INVITATION_URL
1449 @item INVITATION_URL
1450 When the @file{invitation-created} script is called,
1451 this is set to the invitation URL that has been created.
1452 @end table
1453
1454 Do not forget that under UNIX operating systems,
1455 you have to make the scripts executable, using the command @samp{chmod a+x script}.
1456
1457
1458 @c ==================================================================
1459 @node       How to configure
1460 @subsection How to configure
1461
1462 @subsubheading Step 1.  Creating initial configuration files.
1463
1464 The initial directory structure, configuration files and public/private keypairs are created using the following command:
1465
1466 @example
1467 tinc -n @var{netname} init @var{name}
1468 @end example
1469
1470 (You will need to run this as root, or use "sudo".)
1471 This will create the configuration directory @file{@value{sysconfdir}/tinc/@var{netname}.},
1472 and inside it will create another directory named @file{hosts/}.
1473 In the configuration directory, it will create the file @file{tinc.conf} with the following contents:
1474
1475 @example
1476 Name = @var{name}
1477 @end example
1478
1479 It will also create private RSA and ECDSA keys, which will be stored in the files @file{rsa_key.priv} and @file{ecdsa_key.priv}.
1480 It will also create a host configuration file @file{hosts/@var{name}},
1481 which will contain the corresponding public RSA and ECDSA keys.
1482
1483 Finally, on UNIX operating systems, it will create an executable script @file{tinc-up},
1484 which will initially not do anything except warning that you should edit it.
1485
1486 @subsubheading Step 2.  Modifying the initial configuration.
1487
1488 Unless you want to use tinc in switch mode,
1489 you should now configure which range of addresses you will use on the VPN.
1490 Let's assume you will be part of a VPN which uses the address range 192.168.0.0/16,
1491 and you yourself have a smaller portion of that range: 192.168.2.0/24.
1492 Then you should run the following command:
1493
1494 @example
1495 tinc -n @var{netname} add subnet 192.168.2.0/24
1496 @end example
1497
1498 This will add a Subnet statement to your host configuration file.
1499 Try opening the file @file{@value{sysconfdir}/tinc/@var{netname}/hosts/@var{name}} in an editor.
1500 You should now see a file containing the public RSA and ECDSA keys (which looks like a bunch of random characters),
1501 and the following line at the bottom:
1502
1503 @example
1504 Subnet = 192.168.2.0/24
1505 @end example
1506
1507 If you will use more than one address range, you can add more Subnets.
1508 For example, if you also use the IPv6 subnet fec0:0:0:2::/64, you can add it as well:
1509
1510 @example
1511 tinc -n @var{netname} add subnet fec0:0:0:2::/24
1512 @end example
1513
1514 This will add another line to the file @file{hosts/@var{name}}.
1515 If you make a mistake, you can undo it by simply using @samp{del} instead of @samp{add}.
1516
1517 If you want other tinc daemons to create meta-connections to your daemon,
1518 you should add your public IP address or hostname to your host configuration file.
1519 For example, if your hostname is foo.example.org, run:
1520
1521 @example
1522 tinc -n @var{netname} add address foo.example.org
1523 @end example
1524
1525 If you already know to which daemons your daemon should make meta-connections,
1526 you should configure that now as well.
1527 Suppose you want to connect to a daemon named "bar", run:
1528
1529 @example
1530 tinc -n @var{netname} add connectto bar
1531 @end example
1532
1533 Note that you specify the Name of the other daemon here, not an IP address or hostname!
1534 When you start tinc, and it tries to make a connection to "bar",
1535 it will look for a host configuration file named @file{hosts/bar},
1536 and will read Address statements and public keys from that file.
1537
1538 @subsubheading Step 2.  Exchanging configuration files.
1539
1540 If your daemon has a ConnectTo = bar statement in its @file{tinc.conf} file,
1541 or if bar has a ConnectTo your daemon, then you both need each other's host configuration files.
1542 You should send @file{hosts/@var{name}} to bar, and bar should send you his file which you should move to @file{hosts/bar}.
1543 If you are on a UNIX platform, you can easily send an email containing the necessary information using the following command
1544 (assuming the owner of bar has the email address bar@@example.org):
1545
1546 @example
1547 tinc -n @var{netname} export | mail -s "My config file" bar@@example.org
1548 @end example
1549
1550 If the owner of bar does the same to send his host configuration file to you,
1551 you can probably pipe his email through the following command,
1552 or you can just start this command in a terminal and copy&paste the email:
1553
1554 @example
1555 tinc -n @var{netname} import
1556 @end example
1557
1558 If you are the owner of bar yourself, and you have SSH access to that computer,
1559 you can also swap the host configuration files using the following command:
1560
1561 @example
1562 tinc -n @var{netname} export \
1563     | ssh bar.example.org tinc -n @var{netname} exchange \
1564     | tinc -n @var{netname} import
1565 @end example
1566
1567 You should repeat this for all nodes you ConnectTo, or which ConnectTo you.
1568 However, remember that you do not need to ConnectTo all nodes in the VPN;
1569 it is only necessary to create one or a few meta-connections,
1570 after the connections are made tinc will learn about all the other nodes in the VPN,
1571 and will automatically make other connections as necessary.
1572
1573
1574 @c ==================================================================
1575 @node    Network interfaces
1576 @section Network interfaces
1577
1578 Before tinc can start transmitting data over the tunnel, it must
1579 set up the virtual network interface.
1580
1581 First, decide which IP addresses you want to have associated with these
1582 devices, and what network mask they must have.
1583
1584 Tinc will open a virtual network device (@file{/dev/tun}, @file{/dev/tap0} or similar),
1585 which will also create a network interface called something like @samp{tun0}, @samp{tap0}.
1586 If you are using the Linux tun/tap driver, the network interface will by default have the same name as the @var{netname}.
1587 Under Windows you can change the name of the network interface from the Network Connections control panel.
1588
1589 @cindex tinc-up
1590 You can configure the network interface by putting ordinary ifconfig, route, and other commands
1591 to a script named @file{@value{sysconfdir}/tinc/@var{netname}/tinc-up}.
1592 When tinc starts, this script will be executed. When tinc exits, it will execute the script named
1593 @file{@value{sysconfdir}/tinc/@var{netname}/tinc-down}, but normally you don't need to create that script.
1594 You can manually open the script in an editor, or use the following command:
1595
1596 @example
1597 tinc -n @var{netname} edit tinc-up
1598 @end example
1599
1600 An example @file{tinc-up} script, that would be appropriate for the scenario in the previous section, is:
1601
1602 @example
1603 #!/bin/sh
1604 ifconfig $INTERFACE 192.168.2.1 netmask 255.255.0.0
1605 ip addr add fec0:0:0:2::/48 dev $INTERFACE
1606 @end example
1607
1608 The first command gives the interface an IPv4 address and a netmask.
1609 The kernel will also automatically add an IPv4 route to this interface, so normally you don't need
1610 to add route commands to the @file{tinc-up} script.
1611 The kernel will also bring the interface up after this command.
1612 @cindex netmask
1613 The netmask is the mask of the @emph{entire} VPN network, not just your
1614 own subnet.
1615 The second command gives the interface an IPv6 address and netmask,
1616 which will also automatically add an IPv6 route.
1617 If you only want to use "ip addr" commands on Linux, don't forget that it doesn't bring the interface up, unlike ifconfig,
1618 so you need to add @samp{ip link set $INTERFACE up} in that case.
1619
1620 The exact syntax of the ifconfig and route commands differs from platform to platform.
1621 You can look up the commands for setting addresses and adding routes in @ref{Platform specific information},
1622 but it is best to consult the manpages of those utilities on your platform.
1623
1624
1625 @c ==================================================================
1626 @node    Example configuration
1627 @section Example configuration
1628
1629
1630 @cindex example
1631 Imagine the following situation.  Branch A of our example `company' wants to connect
1632 three branch offices in B, C and D using the Internet.  All four offices
1633 have a 24/7 connection to the Internet.
1634
1635 A is going to serve as the center of the network.  B and C will connect
1636 to A, and D will connect to C.  Each office will be assigned their own IP
1637 network, 10.x.0.0.
1638
1639 @example
1640 A: net 10.1.0.0 mask 255.255.0.0 gateway 10.1.54.1 internet IP 1.2.3.4
1641 B: net 10.2.0.0 mask 255.255.0.0 gateway 10.2.1.12 internet IP 2.3.4.5
1642 C: net 10.3.0.0 mask 255.255.0.0 gateway 10.3.69.254 internet IP 3.4.5.6
1643 D: net 10.4.0.0 mask 255.255.0.0 gateway 10.4.3.32 internet IP 4.5.6.7
1644 @end example
1645
1646 Here, ``gateway'' is the VPN IP address of the machine that is running the
1647 tincd, and ``internet IP'' is the IP address of the firewall, which does not
1648 need to run tincd, but it must do a port forwarding of TCP and UDP on port
1649 655 (unless otherwise configured).
1650
1651 In this example, it is assumed that eth0 is the interface that points to
1652 the inner (physical) LAN of the office, although this could also be the
1653 same as the interface that leads to the Internet.  The configuration of
1654 the real interface is also shown as a comment, to give you an idea of
1655 how these example host is set up. All branches use the netname `company'
1656 for this particular VPN.
1657
1658 Each branch is set up using the @samp{tinc init} and @samp{tinc config} commands,
1659 here we just show the end results:
1660
1661 @subsubheading For Branch A
1662
1663 @emph{BranchA} would be configured like this:
1664
1665 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1666
1667 @example
1668 #!/bin/sh
1669
1670 # Real interface of internal network:
1671 # ifconfig eth0 10.1.54.1 netmask 255.255.0.0
1672
1673 ifconfig $INTERFACE 10.1.54.1 netmask 255.0.0.0
1674 @end example
1675
1676 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1677
1678 @example
1679 Name = BranchA
1680 @end example
1681
1682 On all hosts, @file{@value{sysconfdir}/tinc/company/hosts/BranchA} contains:
1683
1684 @example
1685 Subnet = 10.1.0.0/16
1686 Address = 1.2.3.4
1687
1688 -----BEGIN RSA PUBLIC KEY-----
1689 ...
1690 -----END RSA PUBLIC KEY-----
1691 @end example
1692
1693 Note that the IP addresses of eth0 and the VPN interface are the same.
1694 This is quite possible, if you make sure that the netmasks of the interfaces are different.
1695 It is in fact recommended to give both real internal network interfaces and VPN interfaces the same IP address,
1696 since that will make things a lot easier to remember and set up.
1697
1698
1699 @subsubheading For Branch B
1700
1701 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1702
1703 @example
1704 #!/bin/sh
1705
1706 # Real interface of internal network:
1707 # ifconfig eth0 10.2.43.8 netmask 255.255.0.0
1708
1709 ifconfig $INTERFACE 10.2.1.12 netmask 255.0.0.0
1710 @end example
1711
1712 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1713
1714 @example
1715 Name = BranchB
1716 ConnectTo = BranchA
1717 @end example
1718
1719 Note here that the internal address (on eth0) doesn't have to be the
1720 same as on the VPN interface.  Also, ConnectTo is given so that this node will
1721 always try to connect to BranchA.
1722
1723 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchB}:
1724
1725 @example
1726 Subnet = 10.2.0.0/16
1727 Address = 2.3.4.5
1728
1729 -----BEGIN RSA PUBLIC KEY-----
1730 ...
1731 -----END RSA PUBLIC KEY-----
1732 @end example
1733
1734
1735 @subsubheading For Branch C
1736
1737 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1738
1739 @example
1740 #!/bin/sh
1741
1742 # Real interface of internal network:
1743 # ifconfig eth0 10.3.69.254 netmask 255.255.0.0
1744
1745 ifconfig $INTERFACE 10.3.69.254 netmask 255.0.0.0
1746 @end example
1747
1748 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1749
1750 @example
1751 Name = BranchC
1752 ConnectTo = BranchA
1753 @end example
1754
1755 C already has another daemon that runs on port 655, so they have to
1756 reserve another port for tinc. It knows the portnumber it has to listen on
1757 from it's own host configuration file.
1758
1759 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchC}:
1760
1761 @example
1762 Address = 3.4.5.6
1763 Subnet = 10.3.0.0/16
1764 Port = 2000
1765
1766 -----BEGIN RSA PUBLIC KEY-----
1767 ...
1768 -----END RSA PUBLIC KEY-----
1769 @end example
1770
1771
1772 @subsubheading For Branch D
1773
1774 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1775
1776 @example
1777 #!/bin/sh
1778
1779 # Real interface of internal network:
1780 # ifconfig eth0 10.4.3.32 netmask 255.255.0.0
1781
1782 ifconfig $INTERFACE 10.4.3.32 netmask 255.0.0.0
1783 @end example
1784
1785 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1786
1787 @example
1788 Name = BranchD
1789 ConnectTo = BranchC
1790 @end example
1791
1792 D will be connecting to C, which has a tincd running for this network on
1793 port 2000. It knows the port number from the host configuration file.
1794
1795 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchD}:
1796
1797 @example
1798 Subnet = 10.4.0.0/16
1799 Address = 4.5.6.7
1800
1801 -----BEGIN RSA PUBLIC KEY-----
1802 ...
1803 -----END RSA PUBLIC KEY-----
1804 @end example
1805
1806 @subsubheading Key files
1807
1808 A, B, C and D all have their own public/private keypairs:
1809
1810 The private RSA key is stored in @file{@value{sysconfdir}/tinc/company/rsa_key.priv},
1811 the private ECDSA key is stored in @file{@value{sysconfdir}/tinc/company/ecdsa_key.priv},
1812 and the public RSA and ECDSA keys are put into the host configuration file in the @file{@value{sysconfdir}/tinc/company/hosts/} directory.
1813
1814 @subsubheading Starting
1815
1816 After each branch has finished configuration and they have distributed
1817 the host configuration files amongst them, they can start their tinc daemons.
1818 They don't necessarily have to wait for the other branches to have started
1819 their daemons, tinc will try connecting until they are available.
1820
1821
1822 @c ==================================================================
1823 @node    Running tinc
1824 @chapter Running tinc
1825
1826 If everything else is done, you can start tinc by typing the following command:
1827
1828 @example
1829 tinc -n @var{netname} start
1830 @end example
1831
1832 @cindex daemon
1833 Tinc will detach from the terminal and continue to run in the background like a good daemon.
1834 If there are any problems however you can try to increase the debug level
1835 and look in the syslog to find out what the problems are.
1836
1837 @menu
1838 * Runtime options::
1839 * Signals::
1840 * Debug levels::
1841 * Solving problems::
1842 * Error messages::
1843 * Sending bug reports::
1844 @end menu
1845
1846
1847 @c ==================================================================
1848 @node    Runtime options
1849 @section Runtime options
1850
1851 Besides the settings in the configuration file, tinc also accepts some
1852 command line options.
1853
1854 @cindex command line
1855 @cindex runtime options
1856 @cindex options
1857 @c from the manpage
1858 @table @option
1859 @item -c, --config=@var{path}
1860 Read configuration options from the directory @var{path}.  The default is
1861 @file{@value{sysconfdir}/tinc/@var{netname}/}.
1862
1863 @item -D, --no-detach
1864 Don't fork and detach.
1865 This will also disable the automatic restart mechanism for fatal errors.
1866
1867 @cindex debug level
1868 @item -d, --debug=@var{level}
1869 Set debug level to @var{level}.  The higher the debug level, the more gets
1870 logged.  Everything goes via syslog.
1871
1872 @item -n, --net=@var{netname}
1873 Use configuration for net @var{netname}.
1874 This will let tinc read all configuration files from
1875 @file{@value{sysconfdir}/tinc/@var{netname}/}.
1876 Specifying . for @var{netname} is the same as not specifying any @var{netname}.
1877 @xref{Multiple networks}.
1878
1879 @item --pidfile=@var{filename}
1880 Store a cookie in @var{filename} which allows tinc to authenticate.
1881 If unspecified, the default is
1882 @file{@value{localstatedir}/run/tinc.@var{netname}.pid}.
1883
1884 @item -o, --option=[@var{HOST}.]@var{KEY}=@var{VALUE}
1885 Without specifying a @var{HOST}, this will set server configuration variable @var{KEY} to @var{VALUE}.
1886 If specified as @var{HOST}.@var{KEY}=@var{VALUE},
1887 this will set the host configuration variable @var{KEY} of the host named @var{HOST} to @var{VALUE}.
1888 This option can be used more than once to specify multiple configuration variables.
1889
1890 @item -L, --mlock
1891 Lock tinc into main memory.
1892 This will prevent sensitive data like shared private keys to be written to the system swap files/partitions.
1893
1894 This option is not supported on all platforms.
1895
1896 @item --logfile[=@var{file}]
1897 Write log entries to a file instead of to the system logging facility.
1898 If @var{file} is omitted, the default is @file{@value{localstatedir}/log/tinc.@var{netname}.log}.
1899
1900 @item --bypass-security
1901 Disables encryption and authentication.
1902 Only useful for debugging.
1903
1904 @item -R, --chroot
1905 Change process root directory to the directory where the config file is
1906 located (@file{@value{sysconfdir}/tinc/@var{netname}/} as determined by
1907 -n/--net option or as given by -c/--config option), for added security.
1908 The chroot is performed after all the initialization is done, after
1909 writing pid files and opening network sockets.
1910
1911 Note that this option alone does not do any good without -U/--user, below.
1912
1913 Note also that tinc can't run scripts anymore (such as tinc-down or host-up),
1914 unless it's setup to be runnable inside chroot environment.
1915
1916 This option is not supported on all platforms.
1917 @item -U, --user=@var{user}
1918 Switch to the given @var{user} after initialization, at the same time as
1919 chroot is performed (see --chroot above).  With this option tinc drops
1920 privileges, for added security.
1921
1922 This option is not supported on all platforms.
1923
1924 @item --help
1925 Display a short reminder of these runtime options and terminate.
1926
1927 @item --version
1928 Output version information and exit.
1929
1930 @end table
1931
1932 @c ==================================================================
1933 @node    Signals
1934 @section Signals
1935
1936 @cindex signals
1937 You can also send the following signals to a running tincd process:
1938
1939 @c from the manpage
1940 @table @samp
1941
1942 @item ALRM
1943 Forces tinc to try to connect to all uplinks immediately.
1944 Usually tinc attempts to do this itself,
1945 but increases the time it waits between the attempts each time it failed,
1946 and if tinc didn't succeed to connect to an uplink the first time after it started,
1947 it defaults to the maximum time of 15 minutes.
1948
1949 @item HUP
1950 Partially rereads configuration files.
1951 Connections to hosts whose host config file are removed are closed.
1952 New outgoing connections specified in @file{tinc.conf} will be made.
1953 If the --logfile option is used, this will also close and reopen the log file,
1954 useful when log rotation is used.
1955
1956 @end table
1957
1958 @c ==================================================================
1959 @node    Debug levels
1960 @section Debug levels
1961
1962 @cindex debug levels
1963 The tinc daemon can send a lot of messages to the syslog.
1964 The higher the debug level, the more messages it will log.
1965 Each level inherits all messages of the previous level:
1966
1967 @c from the manpage
1968 @table @samp
1969
1970 @item 0
1971 This will log a message indicating tinc has started along with a version number.
1972 It will also log any serious error.
1973
1974 @item 1
1975 This will log all connections that are made with other tinc daemons.
1976
1977 @item 2
1978 This will log status and error messages from scripts and other tinc daemons.
1979
1980 @item 3
1981 This will log all requests that are exchanged with other tinc daemons. These include
1982 authentication, key exchange and connection list updates.
1983
1984 @item 4
1985 This will log a copy of everything received on the meta socket.
1986
1987 @item 5
1988 This will log all network traffic over the virtual private network.
1989
1990 @end table
1991
1992 @c ==================================================================
1993 @node    Solving problems
1994 @section Solving problems
1995
1996 If tinc starts without problems, but if the VPN doesn't work, you will have to find the cause of the problem.
1997 The first thing to do is to start tinc with a high debug level in the foreground,
1998 so you can directly see everything tinc logs:
1999
2000 @example
2001 tincd -n @var{netname} -d5 -D
2002 @end example
2003
2004 If tinc does not log any error messages, then you might want to check the following things:
2005
2006 @itemize
2007 @item @file{tinc-up} script
2008 Does this script contain the right commands?
2009 Normally you must give the interface the address of this host on the VPN, and the netmask must be big enough so that the entire VPN is covered.
2010
2011 @item Subnet
2012 Does the Subnet (or Subnets) in the host configuration file of this host match the portion of the VPN that belongs to this host?
2013
2014 @item Firewalls and NATs
2015 Do you have a firewall or a NAT device (a masquerading firewall or perhaps an ADSL router that performs masquerading)?
2016 If so, check that it allows TCP and UDP traffic on port 655.
2017 If it masquerades and the host running tinc is behind it, make sure that it forwards TCP and UDP traffic to port 655 to the host running tinc.
2018 You can add @samp{TCPOnly = yes} to your host config file to force tinc to only use a single TCP connection,
2019 this works through most firewalls and NATs.
2020
2021 @end itemize
2022
2023
2024 @c ==================================================================
2025 @node    Error messages
2026 @section Error messages
2027
2028 What follows is a list of the most common error messages you might find in the logs.
2029 Some of them will only be visible if the debug level is high enough.
2030
2031 @table @samp
2032 @item Could not open /dev/tap0: No such device
2033
2034 @itemize
2035 @item You forgot to `modprobe netlink_dev' or `modprobe ethertap'.
2036 @item You forgot to compile `Netlink device emulation' in the kernel.
2037 @end itemize
2038
2039 @item Can't write to /dev/net/tun: No such device
2040
2041 @itemize
2042 @item You forgot to `modprobe tun'.
2043 @item You forgot to compile `Universal TUN/TAP driver' in the kernel.
2044 @item The tun device is located somewhere else in @file{/dev/}.
2045 @end itemize
2046
2047 @item Network address and prefix length do not match!
2048
2049 @itemize
2050 @item The Subnet field must contain a @emph{network} address, trailing bits should be 0.
2051 @item If you only want to use one IP address, set the netmask to /32.
2052 @end itemize
2053
2054 @item Error reading RSA key file `rsa_key.priv': No such file or directory
2055
2056 @itemize
2057 @item You forgot to create a public/private keypair.
2058 @item Specify the complete pathname to the private key file with the @samp{PrivateKeyFile} option.
2059 @end itemize
2060
2061 @item Warning: insecure file permissions for RSA private key file `rsa_key.priv'!
2062
2063 @itemize
2064 @item The private key file is readable by users other than root.
2065 Use chmod to correct the file permissions.
2066 @end itemize
2067
2068 @item Creating metasocket failed: Address family not supported
2069
2070 @itemize
2071 @item By default tinc tries to create both IPv4 and IPv6 sockets.
2072 On some platforms this might not be implemented.
2073 If the logs show @samp{Ready} later on, then at least one metasocket was created,
2074 and you can ignore this message.
2075 You can add @samp{AddressFamily = ipv4} to @file{tinc.conf} to prevent this from happening.
2076 @end itemize
2077
2078 @item Cannot route packet: unknown IPv4 destination 1.2.3.4
2079
2080 @itemize
2081 @item You try to send traffic to a host on the VPN for which no Subnet is known.
2082 @item If it is a broadcast address (ending in .255), it probably is a samba server or a Windows host sending broadcast packets.
2083 You can ignore it.
2084 @end itemize
2085
2086 @item Cannot route packet: ARP request for unknown address 1.2.3.4
2087
2088 @itemize
2089 @item You try to send traffic to a host on the VPN for which no Subnet is known.
2090 @end itemize
2091
2092 @item Packet with destination 1.2.3.4 is looping back to us!
2093
2094 @itemize
2095 @item Something is not configured right. Packets are being sent out to the
2096 virtual network device, but according to the Subnet directives in your host configuration
2097 file, those packets should go to your own host. Most common mistake is that
2098 you have a Subnet line in your host configuration file with a prefix length which is
2099 just as large as the prefix of the virtual network interface. The latter should in almost all
2100 cases be larger. Rethink your configuration.
2101 Note that you will only see this message if you specified a debug
2102 level of 5 or higher!
2103 @item Chances are that a @samp{Subnet = ...} line in the host configuration file of this tinc daemon is wrong.
2104 Change it to a subnet that is accepted locally by another interface,
2105 or if that is not the case, try changing the prefix length into /32.
2106 @end itemize
2107
2108 @item Node foo (1.2.3.4) is not reachable
2109
2110 @itemize
2111 @item Node foo does not have a connection anymore, its tinc daemon is not running or its connection to the Internet is broken.
2112 @end itemize
2113
2114 @item Received UDP packet from unknown source 1.2.3.4 (port 12345)
2115
2116 @itemize
2117 @item If you see this only sporadically, it is harmless and caused by a node sending packets using an old key.
2118 @item If you see this often and another node is not reachable anymore, then a NAT (masquerading firewall) is changing the source address of UDP packets.
2119 You can add @samp{TCPOnly = yes} to host configuration files to force all VPN traffic to go over a TCP connection.
2120 @end itemize
2121
2122 @item Got bad/bogus/unauthorized REQUEST from foo (1.2.3.4 port 12345)
2123
2124 @itemize
2125 @item Node foo does not have the right public/private keypair.
2126 Generate new keypairs and distribute them again.
2127 @item An attacker tries to gain access to your VPN.
2128 @item A network error caused corruption of metadata sent from foo.
2129 @end itemize
2130
2131 @end table
2132
2133 @c ==================================================================
2134 @node    Sending bug reports
2135 @section Sending bug reports
2136
2137 If you really can't find the cause of a problem, or if you suspect tinc is not working right,
2138 you can send us a bugreport, see @ref{Contact information}.
2139 Be sure to include the following information in your bugreport:
2140
2141 @itemize
2142 @item A clear description of what you are trying to achieve and what the problem is.
2143 @item What platform (operating system, version, hardware architecture) and which version of tinc you use.
2144 @item If compiling tinc fails, a copy of @file{config.log} and the error messages you get.
2145 @item Otherwise, a copy of @file{tinc.conf}, @file{tinc-up} and all files in the @file{hosts/} directory.
2146 @item The output of the commands @samp{ifconfig -a} and @samp{route -n} (or @samp{netstat -rn} if that doesn't work).
2147 @item The output of any command that fails to work as it should (like ping or traceroute).
2148 @end itemize
2149
2150 @c ==================================================================
2151 @node    Controlling tinc
2152 @chapter Controlling tinc
2153
2154 You can control and inspect a running tincd through the tinc
2155 command. A quick example:
2156
2157 @example
2158 tinc -n @var{netname} reload
2159 @end example
2160
2161 @menu
2162 * tinc runtime options::
2163 * tinc environment variables::
2164 * tinc commands::
2165 * tinc examples::
2166 * tinc top::
2167 @end menu
2168
2169
2170 @c ==================================================================
2171 @node    tinc runtime options
2172 @section tinc runtime options
2173
2174 @c from the manpage
2175 @table @option
2176 @item -c, --config=@var{path}
2177 Read configuration options from the directory @var{path}.  The default is
2178 @file{@value{sysconfdir}/tinc/@var{netname}/}.
2179
2180 @item -n, --net=@var{netname}
2181 Use configuration for net @var{netname}. @xref{Multiple networks}.
2182
2183 @item --pidfile=@var{filename}
2184 Use the cookie from @var{filename} to authenticate with a running tinc daemon.
2185 If unspecified, the default is
2186 @file{@value{localstatedir}/run/tinc.@var{netname}.pid}.
2187
2188 @item --help
2189 Display a short reminder of runtime options and commands, then terminate.
2190
2191 @item --version
2192 Output version information and exit.
2193
2194 @end table
2195
2196 @c ==================================================================
2197 @node    tinc environment variables
2198 @section tinc environment variables
2199
2200 @table @env
2201 @cindex NETNAME
2202 @item NETNAME
2203 If no netname is specified on the command line with the @option{-n} option,
2204 the value of this environment variable is used.
2205 @end table
2206
2207 @c ==================================================================
2208 @node    tinc commands
2209 @section tinc commands
2210
2211 @c from the manpage
2212 @table @code
2213
2214 @item init [@var{name}]
2215 Create initial configuration files and RSA and ECDSA keypairs with default length.
2216 If no @var{name} for this node is given, it will be asked for.
2217
2218 @item get @var{variable}
2219 Print the current value of configuration variable @var{variable}.
2220 If more than one variable with the same name exists,
2221 the value of each of them will be printed on a separate line.
2222
2223 @item set @var{variable} @var{value}
2224 Set configuration variable @var{variable} to the given @var{value}.
2225 All previously existing configuration variables with the same name are removed.
2226 To set a variable for a specific host, use the notation @var{host}.@var{variable}.
2227
2228 @item add @var{variable} @var{value}
2229 As above, but without removing any previously existing configuration variables.
2230
2231 @item del @var{variable} [@var{value}]
2232 Remove configuration variables with the same name and @var{value}.
2233 If no @var{value} is given, all configuration variables with the same name will be removed.
2234
2235 @item edit @var{filename}
2236 Start an editor for the given configuration file.
2237 You do not need to specify the full path to the file.
2238
2239 @item export
2240 Export the host configuration file of the local node to standard output.
2241
2242 @item export-all
2243 Export all host configuration files to standard output.
2244
2245 @item import [--force]
2246 Import host configuration file(s) generated by the tinc export command from standard input.
2247 Already existing host configuration files are not overwritten unless the option --force is used.
2248
2249 @item exchange [--force]
2250 The same as export followed by import.
2251
2252 @item exchange-all [--force]
2253 The same as export-all followed by import.
2254
2255 @item invite @var{name}
2256 Prepares an invitation for a new node with the given @var{name},
2257 and prints a short invitation URL that can be used with the join command.
2258
2259 @item join [@var{URL}]
2260 Join an existing VPN using an invitation URL created using the invite command.
2261 If no @var{URL} is given, it will be read from standard input.
2262
2263 @item start [tincd options]
2264 Start @samp{tincd}, optionally with the given extra options.
2265
2266 @item stop
2267 Stop @samp{tincd}.
2268
2269 @item restart [tincd options]
2270 Restart @samp{tincd}, optionally with the given extra options.
2271
2272 @item reload
2273 Partially rereads configuration files. Connections to hosts whose host
2274 config files are removed are closed. New outgoing connections specified
2275 in @file{tinc.conf} will be made.
2276
2277 @item pid
2278 Shows the PID of the currently running @samp{tincd}.
2279
2280 @item generate-keys [@var{bits}]
2281 Generate both RSA and ECDSA keypairs (see below) and exit.
2282 tinc will ask where you want to store the files, but will default to the
2283 configuration directory (you can use the -c or -n option).
2284
2285 @item generate-ecdsa-keys
2286 Generate public/private ECDSA keypair and exit.
2287
2288 @item generate-rsa-keys [@var{bits}]
2289 Generate public/private RSA keypair and exit.  If @var{bits} is omitted, the
2290 default length will be 2048 bits.  When saving keys to existing files, tinc
2291 will not delete the old keys; you have to remove them manually.
2292
2293 @item dump [reachable] nodes
2294 Dump a list of all known nodes in the VPN.
2295 If the reachable keyword is used, only lists reachable nodes.
2296
2297 @item dump edges
2298 Dump a list of all known connections in the VPN.
2299
2300 @item dump subnets
2301 Dump a list of all known subnets in the VPN.
2302
2303 @item dump connections
2304 Dump a list of all meta connections with ourself.
2305
2306 @item dump graph | digraph
2307 Dump a graph of the VPN in dotty format.
2308 Nodes are colored according to their reachability:
2309 red nodes are unreachable, orange nodes are indirectly reachable, green nodes are directly reachable.
2310 Black nodes are either directly or indirectly reachable, but direct reachability has not been tried yet.
2311
2312 @item info @var{node} | @var{subnet} | @var{address}
2313 Show information about a particular @var{node}, @var{subnet} or @var{address}.
2314 If an @var{address} is given, any matching subnet will be shown.
2315
2316 @item purge
2317 Purges all information remembered about unreachable nodes.
2318
2319 @item debug @var{level}
2320 Sets debug level to @var{level}.
2321
2322 @item log [@var{level}]
2323 Capture log messages from a running tinc daemon.
2324 An optional debug level can be given that will be applied only for log messages sent to tinc.
2325
2326 @item retry
2327 Forces tinc to try to connect to all uplinks immediately.
2328 Usually tinc attempts to do this itself,
2329 but increases the time it waits between the attempts each time it failed,
2330 and if tinc didn't succeed to connect to an uplink the first time after it started,
2331 it defaults to the maximum time of 15 minutes.
2332
2333 @item disconnect @var{node}
2334 Closes the meta connection with the given @var{node}.
2335
2336 @item top
2337 If tinc is compiled with libcurses support, this will display live traffic statistics for all the known nodes,
2338 similar to the UNIX top command.
2339 See below for more information.
2340
2341 @item pcap
2342 Dump VPN traffic going through the local tinc node in pcap-savefile format to standard output,
2343 from where it can be redirected to a file or piped through a program that can parse it directly,
2344 such as tcpdump.
2345
2346 @end table
2347
2348 @c ==================================================================
2349 @node    tinc examples
2350 @section tinc examples
2351
2352 Examples of some commands:
2353
2354 @example
2355 tinc -n vpn dump graph | circo -Txlib
2356 tinc -n vpn pcap | tcpdump -r -
2357 tinc -n vpn top
2358 @end example
2359
2360 Example of configuring tinc using the tinc command:
2361
2362 @example
2363 tinc -n vpn init foo
2364 tinc -n vpn add Subnet 192.168.1.0/24
2365 tinc -n vpn add bar.Address bar.example.com
2366 tinc -n vpn add ConnectTo bar
2367 tinc -n vpn export | gpg --clearsign | mail -s "My config" vpnmaster@@example.com
2368 @end example
2369
2370 @c ==================================================================
2371 @node    tinc top
2372 @section tinc top
2373
2374 The top command connects to a running tinc daemon and repeatedly queries its per-node traffic counters.
2375 It displays a list of all the known nodes in the left-most column,
2376 and the amount of bytes and packets read from and sent to each node in the other columns.
2377 By default, the information is updated every second.
2378 The behaviour of the top command can be changed using the following keys:
2379
2380 @table @key
2381
2382 @item s
2383 Change the interval between updates.
2384 After pressing the @key{s} key, enter the desired interval in seconds, followed by enter.
2385 Fractional seconds are honored.
2386 Intervals lower than 0.1 seconds are not allowed.
2387
2388 @item c
2389 Toggle between displaying current traffic rates (in packets and bytes per second)
2390 and cummulative traffic (total packets and bytes since the tinc daemon started).
2391
2392 @item n
2393 Sort the list of nodes by name.
2394
2395 @item i
2396 Sort the list of nodes by incoming amount of bytes.
2397
2398 @item I
2399 Sort the list of nodes by incoming amount of packets.
2400
2401 @item o
2402 Sort the list of nodes by outgoing amount of bytes.
2403
2404 @item O
2405 Sort the list of nodes by outgoing amount of packets.
2406
2407 @item t
2408 Sort the list of nodes by sum of incoming and outgoing amount of bytes.
2409
2410 @item T
2411 Sort the list of nodes by sum of incoming and outgoing amount of packets.
2412
2413 @item b
2414 Show amount of traffic in bytes.
2415
2416 @item k
2417 Show amount of traffic in kilobytes.
2418
2419 @item M
2420 Show amount of traffic in megabytes.
2421
2422 @item G
2423 Show amount of traffic in gigabytes.
2424
2425 @item q
2426 Quit.
2427
2428 @end table
2429
2430
2431 @c ==================================================================
2432 @node    Technical information
2433 @chapter Technical information
2434
2435
2436 @menu
2437 * The connection::
2438 * The meta-protocol::
2439 * Security::
2440 @end menu
2441
2442
2443 @c ==================================================================
2444 @node    The connection
2445 @section The connection
2446
2447 @cindex connection
2448 Tinc is a daemon that takes VPN data and transmit that to another host
2449 computer over the existing Internet infrastructure.
2450
2451 @menu
2452 * The UDP tunnel::
2453 * The meta-connection::
2454 @end menu
2455
2456
2457 @c ==================================================================
2458 @node    The UDP tunnel
2459 @subsection The UDP tunnel
2460
2461 @cindex virtual network device
2462 @cindex frame type
2463 The data itself is read from a character device file, the so-called
2464 @emph{virtual network device}.  This device is associated with a network
2465 interface.  Any data sent to this interface can be read from the device,
2466 and any data written to the device gets sent from the interface.
2467 There are two possible types of virtual network devices:
2468 `tun' style, which are point-to-point devices which can only handle IPv4 and/or IPv6 packets,
2469 and `tap' style, which are Ethernet devices and handle complete Ethernet frames.
2470
2471 So when tinc reads an Ethernet frame from the device, it determines its
2472 type. When tinc is in it's default routing mode, it can handle IPv4 and IPv6
2473 packets. Depending on the Subnet lines, it will send the packets off to their destination IP address.
2474 In the `switch' and `hub' mode, tinc will use broadcasts and MAC address discovery
2475 to deduce the destination of the packets.
2476 Since the latter modes only depend on the link layer information,
2477 any protocol that runs over Ethernet is supported (for instance IPX and Appletalk).
2478 However, only `tap' style devices provide this information.
2479
2480 After the destination has been determined,
2481 the packet will be compressed (optionally),
2482 a sequence number will be added to the packet,
2483 the packet will then be encrypted
2484 and a message authentication code will be appended.
2485
2486 @cindex encapsulating
2487 @cindex UDP
2488 When that is done, time has come to actually transport the
2489 packet to the destination computer.  We do this by sending the packet
2490 over an UDP connection to the destination host.  This is called
2491 @emph{encapsulating}, the VPN packet (though now encrypted) is
2492 encapsulated in another IP datagram.
2493
2494 When the destination receives this packet, the same thing happens, only
2495 in reverse.  So it checks the message authentication code, decrypts the contents of the UDP datagram,
2496 checks the sequence number
2497 and writes the decrypted information to its own virtual network device.
2498
2499 If the virtual network device is a `tun' device (a point-to-point tunnel),
2500 there is no problem for the kernel to accept a packet.
2501 However, if it is a `tap' device (this is the only available type on FreeBSD),
2502 the destination MAC address must match that of the virtual network interface.
2503 If tinc is in it's default routing mode, ARP does not work, so the correct destination MAC
2504 can not be known by the sending host.
2505 Tinc solves this by letting the receiving end detect the MAC address of its own virtual network interface
2506 and overwriting the destination MAC address of the received packet.
2507
2508 In switch or hub modes ARP does work so the sender already knows the correct destination MAC address.
2509 In those modes every interface should have a unique MAC address, so make sure they are not the same.
2510 Because switch and hub modes rely on MAC addresses to function correctly,
2511 these modes cannot be used on the following operating systems which don't have a `tap' style virtual network device:
2512 OpenBSD, NetBSD, Darwin and Solaris.
2513
2514
2515 @c ==================================================================
2516 @node    The meta-connection
2517 @subsection The meta-connection
2518
2519 Having only a UDP connection available is not enough.  Though suitable
2520 for transmitting data, we want to be able to reliably send other
2521 information, such as routing and session key information to somebody.
2522
2523 @cindex TCP
2524 TCP is a better alternative, because it already contains protection
2525 against information being lost, unlike UDP.
2526
2527 So we establish two connections.  One for the encrypted VPN data, and one
2528 for other information, the meta-data.  Hence, we call the second
2529 connection the meta-connection.  We can now be sure that the
2530 meta-information doesn't get lost on the way to another computer.
2531
2532 @cindex data-protocol
2533 @cindex meta-protocol
2534 Like with any communication, we must have a protocol, so that everybody
2535 knows what everything stands for, and how she should react.  Because we
2536 have two connections, we also have two protocols.  The protocol used for
2537 the UDP data is the ``data-protocol,'' the other one is the
2538 ``meta-protocol.''
2539
2540 The reason we don't use TCP for both protocols is that UDP is much
2541 better for encapsulation, even while it is less reliable.  The real
2542 problem is that when TCP would be used to encapsulate a TCP stream
2543 that's on the private network, for every packet sent there would be
2544 three ACKs sent instead of just one.  Furthermore, if there would be
2545 a timeout, both TCP streams would sense the timeout, and both would
2546 start re-sending packets.
2547
2548
2549 @c ==================================================================
2550 @node    The meta-protocol
2551 @section The meta-protocol
2552
2553 The meta protocol is used to tie all tinc daemons together, and
2554 exchange information about which tinc daemon serves which virtual
2555 subnet.
2556
2557 The meta protocol consists of requests that can be sent to the other
2558 side.  Each request has a unique number and several parameters.  All
2559 requests are represented in the standard ASCII character set.  It is
2560 possible to use tools such as telnet or netcat to connect to a tinc
2561 daemon started with the --bypass-security option
2562 and to read and write requests by hand, provided that one
2563 understands the numeric codes sent.
2564
2565 The authentication scheme is described in @ref{Security}. After a
2566 successful authentication, the server and the client will exchange all the
2567 information about other tinc daemons and subnets they know of, so that both
2568 sides (and all the other tinc daemons behind them) have their information
2569 synchronised.
2570
2571 @cindex ADD_EDGE
2572 @cindex ADD_SUBNET
2573 @example
2574 message
2575 ------------------------------------------------------------------
2576 ADD_EDGE node1 node2 21.32.43.54 655 222 0
2577           |     |        |       |   |  +-> options
2578           |     |        |       |   +----> weight
2579           |     |        |       +--------> UDP port of node2
2580           |     |        +----------------> real address of node2
2581           |     +-------------------------> name of destination node
2582           +-------------------------------> name of source node
2583
2584 ADD_SUBNET node 192.168.1.0/24
2585             |         |     +--> prefixlength
2586             |         +--------> network address
2587             +------------------> owner of this subnet
2588 ------------------------------------------------------------------
2589 @end example
2590
2591 The ADD_EDGE messages are to inform other tinc daemons that a connection between
2592 two nodes exist. The address of the destination node is available so that
2593 VPN packets can be sent directly to that node.
2594
2595 The ADD_SUBNET messages inform other tinc daemons that certain subnets belong
2596 to certain nodes. tinc will use it to determine to which node a VPN packet has
2597 to be sent.
2598
2599 @cindex DEL_EDGE
2600 @cindex DEL_SUBNET
2601 @example
2602 message
2603 ------------------------------------------------------------------
2604 DEL_EDGE node1 node2
2605            |     +----> name of destination node
2606            +----------> name of source node
2607
2608 DEL_SUBNET node 192.168.1.0/24
2609              |         |     +--> prefixlength
2610              |         +--------> network address
2611              +------------------> owner of this subnet
2612 ------------------------------------------------------------------
2613 @end example
2614
2615 In case a connection between two daemons is closed or broken, DEL_EDGE messages
2616 are sent to inform the other daemons of that fact. Each daemon will calculate a
2617 new route to the the daemons, or mark them unreachable if there isn't any.
2618
2619 @cindex REQ_KEY
2620 @cindex ANS_KEY
2621 @cindex KEY_CHANGED
2622 @example
2623 message
2624 ------------------------------------------------------------------
2625 REQ_KEY origin destination
2626            |       +--> name of the tinc daemon it wants the key from
2627            +----------> name of the daemon that wants the key
2628
2629 ANS_KEY origin destination 4ae0b0a82d6e0078 91 64 4
2630            |       |       \______________/ |  |  +--> MAC length
2631            |       |               |        |  +-----> digest algorithm
2632            |       |               |        +--------> cipher algorithm
2633            |       |               +--> 128 bits key
2634            |       +--> name of the daemon that wants the key
2635            +----------> name of the daemon that uses this key
2636
2637 KEY_CHANGED origin
2638               +--> daemon that has changed it's packet key
2639 ------------------------------------------------------------------
2640 @end example
2641
2642 The keys used to encrypt VPN packets are not sent out directly. This is
2643 because it would generate a lot of traffic on VPNs with many daemons, and
2644 chances are that not every tinc daemon will ever send a packet to every
2645 other daemon. Instead, if a daemon needs a key it sends a request for it
2646 via the meta connection of the nearest hop in the direction of the
2647 destination.
2648
2649 @cindex PING
2650 @cindex PONG
2651 @example
2652 daemon  message
2653 ------------------------------------------------------------------
2654 origin  PING
2655 dest.   PONG
2656 ------------------------------------------------------------------
2657 @end example
2658
2659 There is also a mechanism to check if hosts are still alive. Since network
2660 failures or a crash can cause a daemon to be killed without properly
2661 shutting down the TCP connection, this is necessary to keep an up to date
2662 connection list. PINGs are sent at regular intervals, except when there
2663 is also some other traffic. A little bit of salt (random data) is added
2664 with each PING and PONG message, to make sure that long sequences of PING/PONG
2665 messages without any other traffic won't result in known plaintext.
2666
2667 This basically covers what is sent over the meta connection by tinc.
2668
2669
2670 @c ==================================================================
2671 @node    Security
2672 @section Security
2673
2674 @cindex TINC
2675 @cindex Cabal
2676 Tinc got its name from ``TINC,'' short for @emph{There Is No Cabal}; the
2677 alleged Cabal was/is an organisation that was said to keep an eye on the
2678 entire Internet.  As this is exactly what you @emph{don't} want, we named
2679 the tinc project after TINC.
2680
2681 @cindex SVPN
2682 But in order to be ``immune'' to eavesdropping, you'll have to encrypt
2683 your data. Because tinc is a @emph{Secure} VPN (SVPN) daemon, it does
2684 exactly that: encrypt.
2685 However, encryption in itself does not prevent an attacker from modifying the encrypted data.
2686 Therefore, tinc also authenticates the data.
2687 Finally, tinc uses sequence numbers (which themselves are also authenticated) to prevent an attacker from replaying valid packets.
2688
2689 Since version 1.1pre3, tinc has two protocols used to protect your data; the legacy protocol, and the new Simple Peer-to-Peer Security (SPTPS) protocol.
2690 The SPTPS protocol is designed to address some weaknesses in the legacy protocol.
2691 The new authentication protocol is used when two nodes connect to each other that both have the ExperimentalProtocol option set to yes,
2692 otherwise the legacy protocol will be used.
2693
2694 @menu
2695 * Legacy authentication protocol::
2696 * Simple Peer-to-Peer Security::
2697 * Encryption of network packets::
2698 * Security issues::
2699 @end menu
2700
2701
2702 @c ==================================================================
2703 @node       Legacy authentication protocol
2704 @subsection Legacy authentication protocol
2705
2706 @cindex legacy authentication protocol
2707
2708 @cindex ID
2709 @cindex META_KEY
2710 @cindex CHALLENGE
2711 @cindex CHAL_REPLY
2712 @cindex ACK
2713 @example
2714 daemon  message
2715 --------------------------------------------------------------------------
2716 client  <attempts connection>
2717
2718 server  <accepts connection>
2719
2720 client  ID client 17.2
2721               |   |  +-> minor protocol version
2722               |   +----> major protocol version
2723               +--------> name of tinc daemon
2724
2725 server  ID server 17.2
2726               |   |  +-> minor protocol version
2727               |   +----> major protocol version
2728               +--------> name of tinc daemon
2729
2730 client  META_KEY 94 64 0 0 5f0823a93e35b69e...7086ec7866ce582b
2731                  |  |  | | \_________________________________/
2732                  |  |  | |                 +-> RSAKEYLEN bits totally random string S1,
2733                  |  |  | |                     encrypted with server's public RSA key
2734                  |  |  | +-> compression level
2735                  |  |  +---> MAC length
2736                  |  +------> digest algorithm NID
2737                  +---------> cipher algorithm NID
2738
2739 server  META_KEY 94 64 0 0 6ab9c1640388f8f0...45d1a07f8a672630
2740                  |  |  | | \_________________________________/
2741                  |  |  | |                 +-> RSAKEYLEN bits totally random string S2,
2742                  |  |  | |                     encrypted with client's public RSA key
2743                  |  |  | +-> compression level
2744                  |  |  +---> MAC length
2745                  |  +------> digest algorithm NID
2746                  +---------> cipher algorithm NID
2747 --------------------------------------------------------------------------
2748 @end example
2749
2750 The protocol allows each side to specify encryption algorithms and parameters,
2751 but in practice they are always fixed, since older versions of tinc did not
2752 allow them to be different from the default values. The cipher is always
2753 Blowfish in OFB mode, the digest is SHA1, but the MAC length is zero and no
2754 compression is used.
2755
2756 From now on:
2757 @itemize
2758 @item the client will symmetrically encrypt outgoing traffic using S1
2759 @item the server will symmetrically encrypt outgoing traffic using S2
2760 @end itemize
2761
2762 @example
2763 --------------------------------------------------------------------------
2764 client  CHALLENGE da02add1817c1920989ba6ae2a49cecbda0
2765                   \_________________________________/
2766                                  +-> CHALLEN bits totally random string H1
2767
2768 server  CHALLENGE 57fb4b2ccd70d6bb35a64c142f47e61d57f
2769                   \_________________________________/
2770                                  +-> CHALLEN bits totally random string H2
2771
2772 client  CHAL_REPLY 816a86
2773                       +-> 160 bits SHA1 of H2
2774
2775 server  CHAL_REPLY 928ffe
2776                       +-> 160 bits SHA1 of H1
2777
2778 After the correct challenge replies are received, both ends have proved
2779 their identity. Further information is exchanged.
2780
2781 client  ACK 655 123 0
2782              |   |  +-> options
2783              |   +----> estimated weight
2784              +--------> listening port of client
2785
2786 server  ACK 655 321 0
2787              |   |  +-> options
2788              |   +----> estimated weight
2789              +--------> listening port of server
2790 --------------------------------------------------------------------------
2791 @end example
2792
2793 This legacy authentication protocol has several weaknesses, pointed out by security export Peter Gutmann.
2794 First, data is encrypted with RSA without padding.
2795 Padding schemes are designed to prevent attacks when the size of the plaintext is not equal to the size of the RSA key.
2796 Tinc always encrypts random nonces that have the same size as the RSA key, so we do not believe this leads to a break of the security.
2797 There might be timing or other side-channel attacks against RSA encryption and decryption, tinc does not employ any protection against those.
2798 Furthermore, both sides send identical messages to each other, there is no distinction between server and client,
2799 which could make a MITM attack easier.
2800 However, no exploit is known in which a third party who is not already trusted by other nodes in the VPN could gain access.
2801 Finally, the RSA keys are used to directly encrypt the session keys, which means that if the RSA keys are compromised, it is possible to decrypt all previous VPN traffic.
2802 In other words, the legacy protocol does not provide perfect forward secrecy.
2803
2804 @c ==================================================================
2805 @node       Simple Peer-to-Peer Security
2806 @subsection Simple Peer-to-Peer Security
2807 @cindex SPTPS
2808
2809 The SPTPS protocol is designed to address the weaknesses in the legacy protocol.
2810 SPTPS is based on TLS 1.2, but has been simplified: there is no support for exchanging public keys, and there is no cipher suite negotiation.
2811 Instead, SPTPS always uses a very strong cipher suite:
2812 peers authenticate each other using 521 bits ECC keys,
2813 Diffie-Hellman using ephemeral 521 bits ECC keys is used to provide perfect forward secrecy (PFS),
2814 AES-256-CTR is used for encryption, and HMAC-SHA-256 for message authentication.
2815
2816 Similar to TLS, messages are split up in records.
2817 A complete logical record contains the following information:
2818
2819 @itemize
2820 @item uint32_t seqno (network byte order)
2821 @item uint16_t length (network byte order)
2822 @item uint8_t type
2823 @item opaque data[length]
2824 @item opaque hmac[HMAC_SIZE] (HMAC over all preceding fields)
2825 @end itemize
2826
2827 Depending on whether SPTPS records are sent via TCP or UDP, either the seqno or the length field is omitted on the wire
2828 (but they are still included in the calculation of the HMAC);
2829 for TCP packets are guaranteed to arrive in-order so we can infer the seqno, but packets can be split or merged, so we still need the length field to determine the boundaries between records;
2830 for UDP packets we know that there is exactly one record per packet, and we know the length of a packet, but packets can be dropped, duplicated and/or reordered, so we need to include the seqno.
2831
2832 The type field is used to distinguish between application records or handshake records.
2833 Types 0 to 127 are application records, type 128 is a handshake record, and types 129 to 255 are reserved.
2834
2835 Before the initial handshake, no fields are encrypted, and the HMAC field is not present.
2836 After the authentication handshake, the length (if present), type and data fields are encrypted, and the HMAC field is present.
2837 For UDP packets, the seqno field is not encrypted, as it is used to determine the value of the counter used for encryption.
2838
2839 The authentication consists of an exchange of Key EXchange, SIGnature and ACKnowledge messages, transmitted using type 128 records.
2840
2841 Overview:
2842
2843 @example
2844 Initiator   Responder
2845 ---------------------
2846 KEX ->
2847             <- KEX
2848 SIG ->
2849             <- SIG
2850
2851 ...encrypt and HMAC using session keys from now on...
2852
2853 App ->
2854             <- App
2855 ...
2856             ...
2857
2858 ...key renegotiation starts here...
2859
2860 KEX ->
2861             <- KEX
2862 SIG ->
2863             <- SIG
2864 ACK ->
2865             <- ACK
2866
2867 ...encrypt and HMAC using new session keys from now on...
2868
2869 App ->
2870             <- App
2871 ...
2872             ...
2873 ---------------------
2874 @end example
2875
2876 Note that the responder does not need to wait before it receives the first KEX message,
2877 it can immediately send its own once it has accepted an incoming connection.
2878
2879 Key EXchange message:
2880
2881 @itemize
2882 @item uint8_t kex_version (always 0 in this version of SPTPS)
2883 @item opaque nonce[32] (random number)
2884 @item opaque ecdh_key[ECDH_SIZE]
2885 @end itemize
2886
2887 SIGnature message:
2888
2889 @itemize
2890 @item opaque ecdsa_signature[ECDSA_SIZE]
2891 @end itemize
2892
2893 ACKnowledge message:
2894
2895 @itemize
2896 @item empty (only sent after key renegotiation)
2897 @end itemize
2898
2899 Remarks:
2900
2901 @itemize
2902 @item At the start, both peers generate a random nonce and an Elliptic Curve public key and send it to the other in the KEX message.
2903 @item After receiving the other's KEX message, both KEX messages are concatenated (see below),
2904   and the result is signed using ECDSA.
2905   The result is sent to the other.
2906 @item After receiving the other's SIG message, the signature is verified.
2907   If it is correct, the shared secret is calculated from the public keys exchanged in the KEX message using the Elliptic Curve Diffie-Helman algorithm.
2908 @item The shared secret key is expanded using a PRF.
2909   Both nonces and the application specific label are also used as input for the PRF.
2910 @item An ACK message is sent only when doing key renegotiation, and is sent using the old encryption keys.
2911 @item The expanded key is used to key the encryption and HMAC algorithms.
2912 @end itemize
2913
2914 The signature is calculated over this string:
2915
2916 @itemize
2917 @item uint8_t initiator (0 = local peer, 1 = remote peer is initiator)
2918 @item opaque remote_kex_message[1 + 32 + ECDH_SIZE]
2919 @item opaque local_kex_message[1 + 32 + ECDH_SIZE]
2920 @item opaque label[label_length]
2921 @end itemize
2922
2923 The PRF is calculated as follows:
2924
2925 @itemize
2926 @item A HMAC using SHA512 is used, the shared secret is used as the key.
2927 @item For each block of 64 bytes, a HMAC is calculated. For block n: hmac[n] =
2928   HMAC_SHA512(hmac[n - 1] + seed)
2929 @item For the first block (n = 1), hmac[0] is given by HMAC_SHA512(zeroes + seed),
2930   where zeroes is a block of 64 zero bytes.
2931 @end itemize
2932
2933 The seed is as follows:
2934
2935 @itemize
2936 @item const char[13] "key expansion"
2937 @item opaque responder_nonce[32]
2938 @item opaque initiator_nonce[32]
2939 @item opaque label[label_length]
2940 @end itemize
2941
2942 The expanded key is used as follows:
2943
2944 @itemize
2945 @item opaque responder_cipher_key[CIPHER_KEYSIZE]
2946 @item opaque responder_digest_key[DIGEST_KEYSIZE]
2947 @item opaque initiator_cipher_key[CIPHER_KEYSIZE]
2948 @item opaque initiator_digest_key[DIGEST_KEYSIZE]
2949 @end itemize
2950
2951 Where initiator_cipher_key is the key used by session initiator to encrypt
2952 messages sent to the responder.
2953
2954 When using 521 bits EC keys, the AES-256-CTR cipher and HMAC-SHA-256 digest algorithm,
2955 the sizes are as follows:
2956
2957 @example
2958 ECDH_SIZE:       67 (= ceil(521/8) + 1)
2959 ECDSA_SIZE:     141 (= 2 * ceil(521/8) + 9)
2960 CIPHER_KEYSIZE:  48 (= 256/8 + 128/8)
2961 DIGEST_KEYSIZE:  32 (= 256/8)
2962 @end example
2963
2964 Note that the cipher key also includes the initial value for the counter.
2965
2966 @c ==================================================================
2967 @node       Encryption of network packets
2968 @subsection Encryption of network packets
2969 @cindex encryption
2970
2971 A data packet can only be sent if the encryption key is known to both
2972 parties, and the connection is  activated. If the encryption key is not
2973 known, a request is sent to the destination using the meta connection
2974 to retrieve it.
2975
2976 @cindex UDP
2977 The UDP packets can be either encrypted with the legacy protocol or with SPTPS.
2978 In case of the legacy protocol, the UDP packet containing the network packet from the VPN has the following layout:
2979
2980 @example
2981 ... | IP header | UDP header | seqno | VPN packet | MAC | UDP trailer
2982                              \___________________/\_____/
2983                                        |             |
2984                                        V             +---> digest algorithm
2985                          Encrypted with symmetric cipher
2986 @end example
2987
2988
2989
2990
2991 So, the entire VPN packet is encrypted using a symmetric cipher, including a 32 bits
2992 sequence number that is added in front of the actual VPN packet, to act as a unique
2993 IV for each packet and to prevent replay attacks. A message authentication code
2994 is added to the UDP packet to prevent alteration of packets.
2995 Tinc by default encrypts network packets using Blowfish with 128 bit keys in CBC mode
2996 and uses 4 byte long message authentication codes to make sure
2997 eavesdroppers cannot get and cannot change any information at all from the
2998 packets they can intercept. The encryption algorithm and message authentication
2999 algorithm can be changed in the configuration. The length of the message
3000 authentication codes is also adjustable. The length of the key for the
3001 encryption algorithm is always the default length used by OpenSSL.
3002
3003 The SPTPS protocol is described in @ref{Simple Peer-to-Peer Security}.
3004 For comparison, this is how SPTPS UDP packets look:
3005
3006 @example
3007 ... | IP header | UDP header | seqno | type | VPN packet | MAC | UDP trailer
3008                                      \__________________/\_____/
3009                                                |            |
3010                                                V            +---> digest algorithm
3011                                  Encrypted with symmetric cipher
3012 @end example
3013
3014 The difference is that the seqno is not encrypted, since the encryption cipher is used in CTR mode,
3015 and therefore the seqno must be known before the packet can be decrypted.
3016 Furthermore, the MAC is never truncated.
3017 The SPTPS protocol always uses the AES-256-CTR cipher and HMAC-SHA-256 digest,
3018 this cannot be changed.
3019
3020
3021 @c ==================================================================
3022 @node    Security issues
3023 @subsection Security issues
3024
3025 In August 2000, we discovered the existence of a security hole in all versions
3026 of tinc up to and including 1.0pre2. This had to do with the way we exchanged
3027 keys. Since then, we have been working on a new authentication scheme to make
3028 tinc as secure as possible. The current version uses the OpenSSL library and
3029 uses strong authentication with RSA keys.
3030
3031 On the 29th of December 2001, Jerome Etienne posted a security analysis of tinc
3032 1.0pre4. Due to a lack of sequence numbers and a message authentication code
3033 for each packet, an attacker could possibly disrupt certain network services or
3034 launch a denial of service attack by replaying intercepted packets. The current
3035 version adds sequence numbers and message authentication codes to prevent such
3036 attacks.
3037
3038 On the 15th of September 2003, Peter Gutmann posted a security analysis of tinc
3039 1.0.1. He argues that the 32 bit sequence number used by tinc is not a good IV,
3040 that tinc's default length of 4 bytes for the MAC is too short, and he doesn't
3041 like tinc's use of RSA during authentication. We do not know of a security hole
3042 in the legacy protocol of tinc, but it is not as strong as TLS or IPsec.
3043
3044 This version of tinc comes with an improved protocol, called Simple Peer-to-Peer Security,
3045 which aims to be as strong as TLS with one of the strongest cipher suites.
3046
3047 Cryptography is a hard thing to get right. We cannot make any
3048 guarantees. Time, review and feedback are the only things that can
3049 prove the security of any cryptographic product. If you wish to review
3050 tinc or give us feedback, you are stronly encouraged to do so.
3051
3052
3053 @c ==================================================================
3054 @node    Platform specific information
3055 @chapter Platform specific information
3056
3057 @menu
3058 * Interface configuration::
3059 * Routes::
3060 @end menu
3061
3062 @c ==================================================================
3063 @node    Interface configuration
3064 @section Interface configuration
3065
3066 When configuring an interface, one normally assigns it an address and a
3067 netmask.  The address uniquely identifies the host on the network attached to
3068 the interface.  The netmask, combined with the address, forms a subnet.  It is
3069 used to add a route to the routing table instructing the kernel to send all
3070 packets which fall into that subnet to that interface.  Because all packets for
3071 the entire VPN should go to the virtual network interface used by tinc, the
3072 netmask should be such that it encompasses the entire VPN.
3073
3074 For IPv4 addresses:
3075
3076 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
3077 @item Linux
3078 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
3079 @item Linux iproute2
3080 @tab @code{ip addr add} @var{address}@code{/}@var{prefixlength} @code{dev} @var{interface}
3081 @item FreeBSD
3082 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
3083 @item OpenBSD
3084 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
3085 @item NetBSD
3086 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
3087 @item Solaris
3088 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
3089 @item Darwin (MacOS/X)
3090 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
3091 @item Windows
3092 @tab @code{netsh interface ip set address} @var{interface} @code{static} @var{address} @var{netmask}
3093 @end multitable
3094
3095 For IPv6 addresses:
3096
3097 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
3098 @item Linux
3099 @tab @code{ifconfig} @var{interface} @code{add} @var{address}@code{/}@var{prefixlength}
3100 @item FreeBSD
3101 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
3102 @item OpenBSD
3103 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
3104 @item NetBSD
3105 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
3106 @item Solaris
3107 @tab @code{ifconfig} @var{interface} @code{inet6 plumb up}
3108 @item
3109 @tab @code{ifconfig} @var{interface} @code{inet6 addif} @var{address} @var{address}
3110 @item Darwin (MacOS/X)
3111 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
3112 @item Windows
3113 @tab @code{netsh interface ipv6 add address} @var{interface} @code{static} @var{address}/@var{prefixlength}
3114 @end multitable
3115
3116 On some platforms, when running tinc in switch mode, the VPN interface must be set to tap mode with an ifconfig command:
3117
3118 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
3119 @item OpenBSD
3120 @tab @code{ifconfig} @var{interface} @code{link0}
3121 @end multitable
3122
3123 On Linux, it is possible to create a persistent tun/tap interface which will
3124 continue to exist even if tinc quit, although this is normally not required.
3125 It can be useful to set up a tun/tap interface owned by a non-root user, so
3126 tinc can be started without needing any root privileges at all.
3127
3128 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
3129 @item Linux
3130 @tab @code{ip tuntap add dev} @var{interface} @code{mode} @var{tun|tap} @code{user} @var{username}
3131 @end multitable
3132
3133 @c ==================================================================
3134 @node    Routes
3135 @section Routes
3136
3137 In some cases it might be necessary to add more routes to the virtual network
3138 interface.  There are two ways to indicate which interface a packet should go
3139 to, one is to use the name of the interface itself, another way is to specify
3140 the (local) address that is assigned to that interface (@var{local_address}). The
3141 former way is unambiguous and therefore preferable, but not all platforms
3142 support this.
3143
3144 Adding routes to IPv4 subnets:
3145
3146 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
3147 @item Linux
3148 @tab @code{route add -net} @var{network_address} @code{netmask} @var{netmask} @var{interface}
3149 @item Linux iproute2
3150 @tab @code{ip route add} @var{network_address}@code{/}@var{prefixlength} @code{dev} @var{interface}
3151 @item FreeBSD
3152 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
3153 @item OpenBSD
3154 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
3155 @item NetBSD
3156 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
3157 @item Solaris
3158 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address} @code{-interface}
3159 @item Darwin (MacOS/X)
3160 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
3161 @item Windows
3162 @tab @code{netsh routing ip add persistentroute} @var{network_address} @var{netmask} @var{interface} @var{local_address}
3163 @end multitable
3164
3165 Adding routes to IPv6 subnets:
3166
3167 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
3168 @item Linux
3169 @tab @code{route add -A inet6} @var{network_address}@code{/}@var{prefixlength} @var{interface}
3170 @item Linux iproute2
3171 @tab @code{ip route add} @var{network_address}@code{/}@var{prefixlength} @code{dev} @var{interface}
3172 @item FreeBSD
3173 @tab @code{route add -inet6} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
3174 @item OpenBSD
3175 @tab @code{route add -inet6} @var{network_address} @var{local_address} @code{-prefixlen} @var{prefixlength}
3176 @item NetBSD
3177 @tab @code{route add -inet6} @var{network_address} @var{local_address} @code{-prefixlen} @var{prefixlength}
3178 @item Solaris
3179 @tab @code{route add -inet6} @var{network_address}@code{/}@var{prefixlength} @var{local_address} @code{-interface}
3180 @item Darwin (MacOS/X)
3181 @tab ?
3182 @item Windows
3183 @tab @code{netsh interface ipv6 add route} @var{network address}/@var{prefixlength} @var{interface}
3184 @end multitable
3185
3186
3187 @c ==================================================================
3188 @node    About us
3189 @chapter About us
3190
3191
3192 @menu
3193 * Contact information::
3194 * Authors::
3195 @end menu
3196
3197
3198 @c ==================================================================
3199 @node    Contact information
3200 @section Contact information
3201
3202 @cindex website
3203 Tinc's website is at @url{http://www.tinc-vpn.org/},
3204 this server is located in the Netherlands.
3205
3206 @cindex IRC
3207 We have an IRC channel on the FreeNode and OFTC IRC networks. Connect to
3208 @uref{http://www.freenode.net/, irc.freenode.net}
3209 or
3210 @uref{http://www.oftc.net/, irc.oftc.net}
3211 and join channel #tinc.
3212
3213
3214 @c ==================================================================
3215 @node    Authors
3216 @section Authors
3217
3218 @table @asis
3219 @item Ivo Timmermans (zarq)
3220 @item Guus Sliepen (guus) (@email{guus@@tinc-vpn.org})
3221 @end table
3222
3223 We have received a lot of valuable input from users.  With their help,
3224 tinc has become the flexible and robust tool that it is today.  We have
3225 composed a list of contributions, in the file called @file{THANKS} in
3226 the source distribution.
3227
3228
3229 @c ==================================================================
3230 @node    Concept Index
3231 @unnumbered Concept Index
3232
3233 @c ==================================================================
3234 @printindex cp
3235
3236
3237 @c ==================================================================
3238 @contents
3239 @bye