Added graph dumping ability based on Markus Goetz's patch.
[tinc] / src / graph.c
1 /*
2     graph.c -- graph algorithms
3     Copyright (C) 2001-2006 Guus Sliepen <guus@tinc-vpn.org>,
4                   2001-2005 Ivo Timmermans
5
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20     $Id$
21 */
22
23 /* We need to generate two trees from the graph:
24
25    1. A minimum spanning tree for broadcasts,
26    2. A single-source shortest path tree for unicasts.
27
28    Actually, the first one alone would suffice but would make unicast packets
29    take longer routes than necessary.
30
31    For the MST algorithm we can choose from Prim's or Kruskal's. I personally
32    favour Kruskal's, because we make an extra AVL tree of edges sorted on
33    weights (metric). That tree only has to be updated when an edge is added or
34    removed, and during the MST algorithm we just have go linearly through that
35    tree, adding safe edges until #edges = #nodes - 1. The implementation here
36    however is not so fast, because I tried to avoid having to make a forest and
37    merge trees.
38
39    For the SSSP algorithm Dijkstra's seems to be a nice choice. Currently a
40    simple breadth-first search is presented here.
41
42    The SSSP algorithm will also be used to determine whether nodes are directly,
43    indirectly or not reachable from the source. It will also set the correct
44    destination address and port of a node if possible.
45 */
46
47 #include "system.h"
48
49 #include "avl_tree.h"
50 #include "config.h"
51 #include "connection.h"
52 #include "device.h"
53 #include "edge.h"
54 #include "logger.h"
55 #include "netutl.h"
56 #include "node.h"
57 #include "process.h"
58 #include "subnet.h"
59 #include "utils.h"
60
61 static bool graph_changed = true;
62
63 /* Implementation of Kruskal's algorithm.
64    Running time: O(EN)
65    Please note that sorting on weight is already done by add_edge().
66 */
67
68 void mst_kruskal(void)
69 {
70         avl_node_t *node, *next;
71         edge_t *e;
72         node_t *n;
73         connection_t *c;
74         int nodes = 0;
75         int safe_edges = 0;
76         bool skipped;
77
78         cp();
79         
80         /* Clear MST status on connections */
81
82         for(node = connection_tree->head; node; node = node->next) {
83                 c = node->data;
84                 c->status.mst = false;
85         }
86
87         /* Do we have something to do at all? */
88
89         if(!edge_weight_tree->head)
90                 return;
91
92         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Running Kruskal's algorithm:");
93
94         /* Clear visited status on nodes */
95
96         for(node = node_tree->head; node; node = node->next) {
97                 n = node->data;
98                 n->status.visited = false;
99                 nodes++;
100         }
101
102         /* Starting point */
103
104         ((edge_t *) edge_weight_tree->head->data)->from->status.visited = true;
105
106         /* Add safe edges */
107
108         for(skipped = false, node = edge_weight_tree->head; node; node = next) {
109                 next = node->next;
110                 e = node->data;
111
112                 if(!e->reverse || e->from->status.visited == e->to->status.visited) {
113                         skipped = true;
114                         continue;
115                 }
116
117                 e->from->status.visited = true;
118                 e->to->status.visited = true;
119
120                 if(e->connection)
121                         e->connection->status.mst = true;
122
123                 if(e->reverse->connection)
124                         e->reverse->connection->status.mst = true;
125
126                 safe_edges++;
127
128                 ifdebug(SCARY_THINGS) logger(LOG_DEBUG, " Adding edge %s - %s weight %d", e->from->name,
129                                    e->to->name, e->weight);
130
131                 if(skipped) {
132                         skipped = false;
133                         next = edge_weight_tree->head;
134                         continue;
135                 }
136         }
137
138         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Done, counted %d nodes and %d safe edges.", nodes,
139                            safe_edges);
140 }
141
142 /* Implementation of a simple breadth-first search algorithm.
143    Running time: O(E)
144 */
145
146 void sssp_bfs(void)
147 {
148         avl_node_t *node, *next, *to;
149         edge_t *e;
150         node_t *n;
151         list_t *todo_list;
152         list_node_t *from, *todonext;
153         bool indirect;
154         char *name;
155         char *address, *port;
156         char *envp[7];
157         int i;
158
159         cp();
160
161         todo_list = list_alloc(NULL);
162
163         /* Clear visited status on nodes */
164
165         for(node = node_tree->head; node; node = node->next) {
166                 n = node->data;
167                 n->status.visited = false;
168                 n->status.indirect = true;
169         }
170
171         /* Begin with myself */
172
173         myself->status.visited = true;
174         myself->status.indirect = false;
175         myself->nexthop = myself;
176         myself->via = myself;
177         list_insert_head(todo_list, myself);
178
179         /* Loop while todo_list is filled */
180
181         for(from = todo_list->head; from; from = todonext) {    /* "from" is the node from which we start */
182                 n = from->data;
183
184                 for(to = n->edge_tree->head; to; to = to->next) {       /* "to" is the edge connected to "from" */
185                         e = to->data;
186
187                         if(!e->reverse)
188                                 continue;
189
190                         /* Situation:
191
192                                    /
193                                   /
194                            ----->(n)---e-->(e->to)
195                                   \
196                                    \
197
198                            Where e is an edge, (n) and (e->to) are nodes.
199                            n->address is set to the e->address of the edge left of n to n.
200                            We are currently examining the edge e right of n from n:
201
202                            - If e->reverse->address != n->address, then e->to is probably
203                              not reachable for the nodes left of n. We do as if the indirectdata
204                              flag is set on edge e.
205                            - If edge e provides for better reachability of e->to, update
206                              e->to and (re)add it to the todo_list to (re)examine the reachability
207                              of nodes behind it.
208                          */
209
210                         indirect = n->status.indirect || e->options & OPTION_INDIRECT
211                                 || ((n != myself) && sockaddrcmp(&n->address, &e->reverse->address));
212
213                         if(e->to->status.visited
214                            && (!e->to->status.indirect || indirect))
215                                 continue;
216
217                         e->to->status.visited = true;
218                         e->to->status.indirect = indirect;
219                         e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
220                         e->to->via = indirect ? n->via : e->to;
221                         e->to->options = e->options;
222
223                         if(sockaddrcmp(&e->to->address, &e->address)) {
224                                 node = avl_unlink(node_udp_tree, e->to);
225                                 sockaddrfree(&e->to->address);
226                                 sockaddrcpy(&e->to->address, &e->address);
227
228                                 if(e->to->hostname)
229                                         free(e->to->hostname);
230
231                                 e->to->hostname = sockaddr2hostname(&e->to->address);
232
233                                 if(node)
234                                         avl_insert_node(node_udp_tree, node);
235
236                                 if(e->to->options & OPTION_PMTU_DISCOVERY) {
237                                         e->to->mtuprobes = 0;
238                                         e->to->minmtu = 0;
239                                         e->to->maxmtu = MTU;
240                                         if(e->to->status.validkey)
241                                                 send_mtu_probe(e->to);
242                                 }
243                         }
244
245                         list_insert_tail(todo_list, e->to);
246                 }
247
248                 todonext = from->next;
249                 list_delete_node(todo_list, from);
250         }
251
252         list_free(todo_list);
253
254         /* Check reachability status. */
255
256         for(node = node_tree->head; node; node = next) {
257                 next = node->next;
258                 n = node->data;
259
260                 if(n->status.visited != n->status.reachable) {
261                         n->status.reachable = !n->status.reachable;
262
263                         if(n->status.reachable) {
264                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became reachable"),
265                                            n->name, n->hostname);
266                                 avl_insert(node_udp_tree, n);
267                         } else {
268                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became unreachable"),
269                                            n->name, n->hostname);
270                                 avl_delete(node_udp_tree, n);
271                         }
272
273                         n->status.validkey = false;
274                         n->status.waitingforkey = false;
275
276                         n->maxmtu = MTU;
277                         n->minmtu = 0;
278                         n->mtuprobes = 0;
279
280                         asprintf(&envp[0], "NETNAME=%s", netname ? : "");
281                         asprintf(&envp[1], "DEVICE=%s", device ? : "");
282                         asprintf(&envp[2], "INTERFACE=%s", iface ? : "");
283                         asprintf(&envp[3], "NODE=%s", n->name);
284                         sockaddr2str(&n->address, &address, &port);
285                         asprintf(&envp[4], "REMOTEADDRESS=%s", address);
286                         asprintf(&envp[5], "REMOTEPORT=%s", port);
287                         envp[6] = NULL;
288
289                         execute_script(n->status.reachable ? "host-up" : "host-down", envp);
290
291                         asprintf(&name,
292                                          n->status.reachable ? "hosts/%s-up" : "hosts/%s-down",
293                                          n->name);
294                         execute_script(name, envp);
295
296                         free(name);
297                         free(address);
298                         free(port);
299
300                         for(i = 0; i < 6; i++)
301                                 free(envp[i]);
302
303                         subnet_update(n, NULL, n->status.reachable);
304                 }
305         }
306 }
307
308 void graph(void)
309 {
310         mst_kruskal();
311         sssp_bfs();
312         graph_changed = true;
313 }
314
315
316
317 /* Dump nodes and edges to a graphviz file.
318            
319    The file can be converted to an image with
320    dot -Tpng graph_filename -o image_filename.png -Gconcentrate=true
321 */
322
323 void dump_graph(void)
324 {
325         avl_node_t *node;
326         node_t *n;
327         edge_t *e;
328         char *filename = NULL, *tmpname = NULL;
329         FILE *file;
330         
331         if(!graph_changed || !get_config_string(lookup_config(config_tree, "GraphDumpFile"), &filename))
332                 return;
333
334         graph_changed = false;
335
336         ifdebug(PROTOCOL) logger(LOG_NOTICE, "Dumping graph");
337         
338         if(filename[0] == '|') {
339                 file = popen(filename + 1, "w");
340         } else {
341                 asprintf(&tmpname, "%s.new", filename);
342                 file = fopen(tmpname, "w");
343         }
344
345         if(!file) {
346                 logger(LOG_ERR, "Unable to open graph dump file %s: %s", filename, strerror(errno));
347                 free(tmpname);
348                 return;
349         }
350
351         fprintf(file, "digraph {\n");
352         
353         /* dump all nodes first */
354         for(node = node_tree->head; node; node = node->next) {
355                 n = node->data;
356                 fprintf(file, " %s [label = \"%s\"];\n", n->name, n->name);
357         }
358
359         /* now dump all edges */
360         for(node = edge_weight_tree->head; node; node = node->next) {
361                 e = node->data;
362                 fprintf(file, " %s -> %s;\n", e->from->name, e->to->name);
363         }
364
365         fprintf(file, "}\n");   
366         
367         fclose(file);
368
369         if(filename[0] != '|') {
370                 rename(tmpname, filename);
371                 free(tmpname);
372         }
373 }