Apply patch from Scott Lamb: Update documentation to match tincctl changes
[tinc] / doc / tinc.texi
1 \input texinfo   @c -*-texinfo-*-
2 @c $Id$
3 @c %**start of header
4 @setfilename tinc.info
5 @settitle tinc Manual
6 @setchapternewpage odd
7 @c %**end of header
8
9 @include tincinclude.texi
10
11 @ifinfo
12 @dircategory Networking tools
13 @direntry
14 * tinc: (tinc).              The tinc Manual.
15 @end direntry
16
17 This is the info manual for @value{PACKAGE} version @value{VERSION}, a Virtual Private Network daemon.
18
19 Copyright @copyright{} 1998-2006 Ivo Timmermans,
20 Guus Sliepen <guus@@tinc-vpn.org> and
21 Wessel Dankers <wsl@@tinc-vpn.org>.
22
23 $Id$
24
25 Permission is granted to make and distribute verbatim copies of this
26 manual provided the copyright notice and this permission notice are
27 preserved on all copies.
28
29 Permission is granted to copy and distribute modified versions of this
30 manual under the conditions for verbatim copying, provided that the
31 entire resulting derived work is distributed under the terms of a
32 permission notice identical to this one.
33
34 @end ifinfo
35
36 @titlepage
37 @title tinc Manual
38 @subtitle Setting up a Virtual Private Network with tinc
39 @author Ivo Timmermans and Guus Sliepen
40
41 @page
42 @vskip 0pt plus 1filll
43 @cindex copyright
44 This is the info manual for @value{PACKAGE} version @value{VERSION}, a Virtual Private Network daemon.
45
46 Copyright @copyright{} 1998-2007 Ivo Timmermans,
47 Guus Sliepen <guus@@tinc-vpn.org> and
48 Wessel Dankers <wsl@@tinc-vpn.org>.
49
50 $Id$
51
52 Permission is granted to make and distribute verbatim copies of this
53 manual provided the copyright notice and this permission notice are
54 preserved on all copies.
55
56 Permission is granted to copy and distribute modified versions of this
57 manual under the conditions for verbatim copying, provided that the
58 entire resulting derived work is distributed under the terms of a
59 permission notice identical to this one.
60
61 @end titlepage
62
63 @ifinfo
64 @c ==================================================================
65 @node Top
66 @top Top
67
68 @menu
69 * Introduction::
70 * Preparations::
71 * Installation::
72 * Configuration::
73 * Running tinc::
74 * Controlling tinc::
75 * Technical information::
76 * Platform specific information::
77 * About us::
78 * Concept Index::               All used terms explained
79 @end menu
80 @end ifinfo
81
82 @c ==================================================================
83 @node    Introduction
84 @chapter Introduction
85
86 @cindex tinc
87 Tinc is a Virtual Private Network (VPN) daemon that uses tunneling and
88 encryption to create a secure private network between hosts on the
89 Internet.
90
91 Because the tunnel appears to the IP level network code as a normal
92 network device, there is no need to adapt any existing software.
93 The encrypted tunnels allows VPN sites to share information with each other
94 over the Internet without exposing any information to others.
95
96 This document is the manual for tinc.  Included are chapters on how to
97 configure your computer to use tinc, as well as the configuration
98 process of tinc itself.
99
100 @menu
101 * Virtual Private Networks::
102 * tinc::                        About tinc
103 * Supported platforms::
104 @end menu
105
106 @c ==================================================================
107 @node    Virtual Private Networks
108 @section Virtual Private Networks
109
110 @cindex VPN
111 A Virtual Private Network or VPN is a network that can only be accessed
112 by a few elected computers that participate.  This goal is achievable in
113 more than just one way.
114
115 @cindex private
116 Private networks can consist of a single stand-alone Ethernet LAN.  Or
117 even two computers hooked up using a null-modem cable.  In these cases,
118 it is
119 obvious that the network is @emph{private}, no one can access it from the
120 outside.  But if your computers are linked to the Internet, the network
121 is not private anymore, unless one uses firewalls to block all private
122 traffic.  But then, there is no way to send private data to trusted
123 computers on the other end of the Internet.
124
125 @cindex virtual
126 This problem can be solved by using @emph{virtual} networks.  Virtual
127 networks can live on top of other networks, but they use encapsulation to
128 keep using their private address space so they do not interfere with
129 the Internet.  Mostly, virtual networks appear like a singe LAN, even though
130 they can span the entire world.  But virtual networks can't be secured
131 by using firewalls, because the traffic that flows through it has to go
132 through the Internet, where other people can look at it.
133
134 As is the case with either type of VPN, anybody could eavesdrop.  Or
135 worse, alter data.  Hence it's probably advisable to encrypt the data
136 that flows over the network.
137
138 When one introduces encryption, we can form a true VPN.  Other people may
139 see encrypted traffic, but if they don't know how to decipher it (they
140 need to know the key for that), they cannot read the information that flows
141 through the VPN.  This is what tinc was made for.
142
143
144 @c ==================================================================
145 @node    tinc
146 @section tinc
147
148 @cindex vpnd
149 I really don't quite remember what got us started, but it must have been
150 Guus' idea.  He wrote a simple implementation (about 50 lines of C) that
151 used the ethertap device that Linux knows of since somewhere
152 about kernel 2.1.60.  It didn't work immediately and he improved it a
153 bit.  At this stage, the project was still simply called "vpnd".
154
155 Since then, a lot has changed---to say the least.
156
157 @cindex tincd
158 Tinc now supports encryption, it consists of a single daemon (tincd) for
159 both the receiving and sending end, it has become largely
160 runtime-configurable---in short, it has become a full-fledged
161 professional package.
162
163 @cindex traditional VPNs
164 @cindex scalability
165 Tinc also allows more than two sites to connect to eachother and form a single VPN.
166 Traditionally VPNs are created by making tunnels, which only have two endpoints.
167 Larger VPNs with more sites are created by adding more tunnels.
168 Tinc takes another approach: only endpoints are specified,
169 the software itself will take care of creating the tunnels.
170 This allows for easier configuration and improved scalability.
171
172 A lot can---and will be---changed. We have a number of things that we would like to
173 see in the future releases of tinc.  Not everything will be available in
174 the near future.  Our first objective is to make tinc work perfectly as
175 it stands, and then add more advanced features.
176
177 Meanwhile, we're always open-minded towards new ideas.  And we're
178 available too.
179
180
181 @c ==================================================================
182 @node    Supported platforms
183 @section Supported platforms
184
185 @cindex platforms
186 Tinc has been verified to work under Linux, FreeBSD, OpenBSD, NetBSD, MacOS/X (Darwin), Solaris, and Windows (both natively and in a Cygwin environment),
187 with various hardware architectures.  These are some of the platforms
188 that are supported by the universal tun/tap device driver or other virtual network device drivers.
189 Without such a driver, tinc will most
190 likely compile and run, but it will not be able to send or receive data
191 packets.
192
193 @cindex release
194 For an up to date list of supported platforms, please check the list on
195 our website:
196 @uref{http://www.tinc-vpn.org/platforms}.
197
198 @c
199 @c
200 @c
201 @c
202 @c
203 @c
204 @c       Preparing your system
205 @c
206 @c
207 @c
208 @c
209 @c
210
211 @c ==================================================================
212 @node    Preparations
213 @chapter Preparations
214
215 This chapter contains information on how to prepare your system to
216 support tinc.
217
218 @menu
219 * Configuring the kernel::
220 * Libraries::
221 @end menu
222
223
224 @c ==================================================================
225 @node    Configuring the kernel
226 @section Configuring the kernel
227
228 @menu
229 * Configuration of Linux kernels 2.1.60 up to 2.4.0::
230 * Configuration of Linux kernels 2.4.0 and higher::
231 * Configuration of FreeBSD kernels::
232 * Configuration of OpenBSD kernels::
233 * Configuration of NetBSD kernels::
234 * Configuration of Solaris kernels::
235 * Configuration of Darwin (MacOS/X) kernels::
236 * Configuration of Windows::
237 @end menu
238
239
240 @c ==================================================================
241 @node       Configuration of Linux kernels 2.1.60 up to 2.4.0
242 @subsection Configuration of Linux kernels 2.1.60 up to 2.4.0
243
244 @cindex ethertap
245 For kernels up to 2.4.0, you need a kernel that supports the ethertap device.
246 Most distributions come with kernels that already support this.
247 If not, here are the options you have to turn on when configuring a new kernel:
248
249 @example
250 Code maturity level options
251 [*] Prompt for development and/or incomplete code/drivers
252 Networking options
253 [*] Kernel/User netlink socket
254 <M> Netlink device emulation
255 Network device support
256 <M> Ethertap network tap
257 @end example
258
259 If you want to run more than one instance of tinc or other programs that use
260 the ethertap, you have to compile the ethertap driver as a module, otherwise
261 you can also choose to compile it directly into the kernel.
262
263 If you decide to build any of these as dynamic kernel modules, it's a good idea
264 to add these lines to @file{/etc/modules.conf}:
265
266 @example
267 alias char-major-36 netlink_dev
268 alias tap0 ethertap
269 options tap0 -o tap0 unit=0
270 alias tap1 ethertap
271 options tap1 -o tap1 unit=1
272 ...
273 alias tap@emph{N} ethertap
274 options tap@emph{N} -o tap@emph{N} unit=@emph{N}
275 @end example
276
277 Add as much alias/options lines as necessary.
278
279
280 @c ==================================================================
281 @node       Configuration of Linux kernels 2.4.0 and higher
282 @subsection Configuration of Linux kernels 2.4.0 and higher
283
284 @cindex Universal tun/tap
285 For kernels 2.4.0 and higher, you need a kernel that supports the Universal tun/tap device.
286 Most distributions come with kernels that already support this.
287 Here are the options you have to turn on when configuring a new kernel:
288
289 @example
290 Code maturity level options
291 [*] Prompt for development and/or incomplete code/drivers
292 Network device support
293 <M> Universal tun/tap device driver support
294 @end example
295
296 It's not necessary to compile this driver as a module, even if you are going to
297 run more than one instance of tinc.
298
299 If you have an early 2.4 kernel, you can choose both the tun/tap driver and the
300 `Ethertap network tap' device.  This latter is marked obsolete, and chances are
301 that it won't even function correctly anymore.  Make sure you select the
302 universal tun/tap driver.
303
304 If you decide to build the tun/tap driver as a kernel module, add these lines
305 to @file{/etc/modules.conf}:
306
307 @example
308 alias char-major-10-200 tun
309 @end example
310
311
312 @c ==================================================================
313 @node       Configuration of FreeBSD kernels
314 @subsection Configuration of FreeBSD kernels
315
316 For FreeBSD version 4.1 and higher, tun and tap drivers are included in the default kernel configuration.
317 Using tap devices is recommended.
318
319
320 @c ==================================================================
321 @node       Configuration of OpenBSD kernels
322 @subsection Configuration of OpenBSD kernels
323
324 For OpenBSD version 2.9 and higher,
325 the tun driver is included in the default kernel configuration.
326 There is also a kernel patch from @uref{http://diehard.n-r-g.com/stuff/openbsd/}
327 which adds a tap device to OpenBSD.
328 This should work with tinc.
329
330
331 @c ==================================================================
332 @node       Configuration of NetBSD kernels
333 @subsection Configuration of NetBSD kernels
334
335 For NetBSD version 1.5.2 and higher,
336 the tun driver is included in the default kernel configuration.
337
338 Tunneling IPv6 may not work on NetBSD's tun device.
339
340
341 @c ==================================================================
342 @node       Configuration of Solaris kernels
343 @subsection Configuration of Solaris kernels
344
345 For Solaris 8 (SunOS 5.8) and higher,
346 the tun driver may or may not be included in the default kernel configuration.
347 If it isn't, the source can be downloaded from @uref{http://vtun.sourceforge.net/tun/}.
348 For x86 and sparc64 architectures, precompiled versions can be found at @uref{http://www.monkey.org/~dugsong/fragroute/}.
349 If the @file{net/if_tun.h} header file is missing, install it from the source package.
350
351
352 @c ==================================================================
353 @node       Configuration of Darwin (MacOS/X) kernels
354 @subsection Configuration of Darwin (MacOS/X) kernels
355
356 Tinc on Darwin relies on a tunnel driver for its data acquisition from the kernel.
357 Tinc supports either the driver from @uref{http://www-user.rhrk.uni-kl.de/~nissler/tuntap/},
358 which supports both tun and tap style devices,
359 and also the driver from from @uref{http://chrisp.de/en/projects/tunnel.html}.
360 The former driver is recommended.
361 The tunnel driver must be loaded before starting tinc with the following command:
362
363 @example
364 kmodload tunnel
365 @end example
366
367
368 @c ==================================================================
369 @node       Configuration of Windows
370 @subsection Configuration of Windows
371
372 You will need to install the latest TAP-Win32 driver from OpenVPN.
373 You can download it from @uref{http://openvpn.sourceforge.net}.
374 Using the Network Connections control panel,
375 configure the TAP-Win32 network interface in the same way as you would do from the tinc-up script,
376 as explained in the rest of the documentation.
377
378
379 @c ==================================================================
380 @node    Libraries
381 @section Libraries
382
383 @cindex requirements
384 @cindex libraries
385 Before you can configure or build tinc, you need to have the OpenSSL,
386 zlib and lzo libraries installed on your system.  If you try to configure tinc without
387 having them installed, configure will give you an error message, and stop.
388
389 @menu
390 * OpenSSL::
391 * zlib::
392 * lzo::
393 * libevent::
394 @end menu
395
396
397 @c ==================================================================
398 @node       OpenSSL
399 @subsection OpenSSL
400
401 @cindex OpenSSL
402 For all cryptography-related functions, tinc uses the functions provided
403 by the OpenSSL library.
404
405 If this library is not installed, you wil get an error when configuring
406 tinc for build.  Support for running tinc without having OpenSSL
407 installed @emph{may} be added in the future.
408
409 You can use your operating system's package manager to install this if
410 available.  Make sure you install the development AND runtime versions
411 of this package.
412
413 If you have to install OpenSSL manually, you can get the source code
414 from @url{http://www.openssl.org/}.  Instructions on how to configure,
415 build and install this package are included within the package.  Please
416 make sure you build development and runtime libraries (which is the
417 default).
418
419 If you installed the OpenSSL libraries from source, it may be necessary
420 to let configure know where they are, by passing configure one of the
421 --with-openssl-* parameters.
422
423 @example
424 --with-openssl=DIR      OpenSSL library and headers prefix
425 --with-openssl-include=DIR OpenSSL headers directory
426                         (Default is OPENSSL_DIR/include)
427 --with-openssl-lib=DIR  OpenSSL library directory
428                         (Default is OPENSSL_DIR/lib)
429 @end example
430
431
432 @subsubheading License
433
434 @cindex license
435 The complete source code of tinc is covered by the GNU GPL version 2.
436 Since the license under which OpenSSL is distributed is not directly
437 compatible with the terms of the GNU GPL
438 @uref{http://www.openssl.org/support/faq.html#LEGAL2}, we
439 include an exemption to the GPL (see also the file COPYING.README) to allow
440 everyone to create a statically or dynamically linked executable:
441
442 @quotation
443 This program is released under the GPL with the additional exemption
444 that compiling, linking, and/or using OpenSSL is allowed.  You may
445 provide binary packages linked to the OpenSSL libraries, provided that
446 all other requirements of the GPL are met.
447 @end quotation
448
449 Since the LZO library used by tinc is also covered by the GPL,
450 we also present the following exemption:
451
452 @quotation
453 Hereby I grant a special exception to the tinc VPN project
454 (http://www.tinc-vpn.org/) to link the LZO library with the OpenSSL library
455 (http://www.openssl.org).
456
457 Markus F.X.J. Oberhumer
458 @end quotation
459
460
461 @c ==================================================================
462 @node       zlib
463 @subsection zlib
464
465 @cindex zlib
466 For the optional compression of UDP packets, tinc uses the functions provided
467 by the zlib library.
468
469 If this library is not installed, you wil get an error when configuring
470 tinc for build.  Support for running tinc without having zlib
471 installed @emph{may} be added in the future.
472
473 You can use your operating system's package manager to install this if
474 available.  Make sure you install the development AND runtime versions
475 of this package.
476
477 If you have to install zlib manually, you can get the source code
478 from @url{http://www.gzip.org/zlib/}.  Instructions on how to configure,
479 build and install this package are included within the package.  Please
480 make sure you build development and runtime libraries (which is the
481 default).
482
483
484 @c ==================================================================
485 @node       lzo
486 @subsection lzo
487
488 @cindex lzo
489 Another form of compression is offered using the lzo library.
490
491 If this library is not installed, you wil get an error when configuring
492 tinc for build.  Support for running tinc without having lzo
493 installed @emph{may} be added in the future.
494
495 You can use your operating system's package manager to install this if
496 available.  Make sure you install the development AND runtime versions
497 of this package.
498
499 If you have to install lzo manually, you can get the source code
500 from @url{http://www.oberhumer.com/opensource/lzo/}.  Instructions on how to configure,
501 build and install this package are included within the package.  Please
502 make sure you build development and runtime libraries (which is the
503 default).
504
505
506 @c ==================================================================
507 @node       libevent
508 @subsection libevent
509
510 @cindex libevent
511 For the main event loop, tinc uses the libevent library.
512
513 If this library is not installed, you wil get an error when configuring
514 tinc for build.
515
516 You can use your operating system's package manager to install this if
517 available.  Make sure you install the development AND runtime versions
518 of this package.
519
520 If you have to install libevent manually, you can get the source code
521 from @url{http://monkey.org/~provos/libevent/}.  Instructions on how to configure,
522 build and install this package are included within the package.  Please
523 make sure you build development and runtime libraries (which is the
524 default).
525
526
527 @c
528 @c
529 @c
530 @c      Installing tinc
531 @c
532 @c
533 @c
534 @c
535
536 @c ==================================================================
537 @node    Installation
538 @chapter Installation
539
540 If you use Debian, you may want to install one of the
541 precompiled packages for your system.  These packages are equipped with
542 system startup scripts and sample configurations.
543
544 If you cannot use one of the precompiled packages, or you want to compile tinc
545 for yourself, you can use the source.  The source is distributed under
546 the GNU General Public License (GPL).  Download the source from the
547 @uref{http://www.tinc-vpn.org/download, download page}, which has
548 the checksums of these files listed; you may wish to check these with
549 md5sum before continuing.
550
551 Tinc comes in a convenient autoconf/automake package, which you can just
552 treat the same as any other package.  Which is just untar it, type
553 `./configure' and then `make'.
554 More detailed instructions are in the file @file{INSTALL}, which is
555 included in the source distribution.
556
557 @menu
558 * Building and installing tinc::
559 * System files::
560 @end menu
561
562
563 @c ==================================================================
564 @node    Building and installing tinc
565 @section Building and installing tinc
566
567 Detailed instructions on configuring the source, building tinc and installing tinc
568 can be found in the file called @file{INSTALL}.
569
570 @cindex binary package
571 If you happen to have a binary package for tinc for your distribution,
572 you can use the package management tools of that distribution to install tinc.
573 The documentation that comes along with your distribution will tell you how to do that.
574
575 @menu
576 * Darwin (MacOS/X) build environment::
577 * Cygwin (Windows) build environment::
578 * MinGW (Windows) build environment::
579 @end menu
580
581
582 @c ==================================================================
583 @node       Darwin (MacOS/X) build environment
584 @subsection Darwin (MacOS/X) build environment
585
586 In order to build tinc on Darwin, you need to install the MacOS/X Developer Tools
587 from @uref{http://developer.apple.com/tools/macosxtools.html} and
588 a recent version of Fink from @uref{http://fink.sourceforge.net/}.
589
590 After installation use fink to download and install the following packages:
591 autoconf25, automake, dlcompat, m4, openssl, zlib and lzo.
592
593 @c ==================================================================
594 @node       Cygwin (Windows) build environment
595 @subsection Cygwin (Windows) build environment
596
597 If Cygwin hasn't already been installed, install it directly from
598 @uref{http://www.cygwin.com/}.
599
600 When tinc is compiled in a Cygwin environment, it can only be run in this environment,
601 but all programs, including those started outside the Cygwin environment, will be able to use the VPN.
602 It will also support all features.
603
604 @c ==================================================================
605 @node       MinGW (Windows) build environment
606 @subsection MinGW (Windows) build environment
607
608 You will need to install the MinGW environment from @uref{http://www.mingw.org}.
609
610 When tinc is compiled using MinGW it runs natively under Windows,
611 it is not necessary to keep MinGW installed.
612
613 When detaching, tinc will install itself as a service,
614 which will be restarted automatically after reboots.
615
616
617 @c ==================================================================
618 @node    System files
619 @section System files
620
621 Before you can run tinc, you must make sure you have all the needed
622 files on your system.
623
624 @menu
625 * Device files::
626 * Other files::
627 @end menu
628
629
630 @c ==================================================================
631 @node       Device files
632 @subsection Device files
633
634 @cindex device files
635 First, you'll need the special device file(s) that form the interface
636 between the kernel and the daemon.
637
638 The permissions for these files have to be such that only the super user
639 may read/write to this file.  You'd want this, because otherwise
640 eavesdropping would become a bit too easy.  This does, however, imply
641 that you'd have to run tincd as root.
642
643 If you use Linux and have a kernel version prior to 2.4.0, you have to make the
644 ethertap devices:
645
646 @example
647 mknod -m 600 /dev/tap0 c 36 16
648 mknod -m 600 /dev/tap1 c 36 17
649 ...
650 mknod -m 600 /dev/tap@emph{N} c 36 @emph{N+16}
651 @end example
652
653 There is a maximum of 16 ethertap devices.
654
655 If you use the universal tun/tap driver, you have to create the
656 following device file (unless it already exist):
657
658 @example
659 mknod -m 600 /dev/tun c 10 200
660 @end example
661
662 If you use Linux, and you run the new 2.4 kernel using the devfs filesystem,
663 then the tun/tap device will probably be automatically generated as
664 @file{/dev/net/tun}.
665
666 Unlike the ethertap device, you do not need multiple device files if
667 you are planning to run multiple tinc daemons.
668
669
670 @c ==================================================================
671 @node       Other files
672 @subsection Other files
673
674 @subsubheading @file{/etc/networks}
675
676 You may add a line to @file{/etc/networks} so that your VPN will get a
677 symbolic name.  For example:
678
679 @example
680 myvpn 10.0.0.0
681 @end example
682
683 @subsubheading @file{/etc/services}
684
685 @cindex port numbers
686 You may add this line to @file{/etc/services}.  The effect is that you
687 may supply a @samp{tinc} as a valid port number to some programs.  The
688 number 655 is registered with the IANA.
689
690 @example
691 tinc            655/tcp    TINC
692 tinc            655/udp    TINC
693 #                          Ivo Timmermans <ivo@@tinc-vpn.org>
694 @end example
695
696
697 @c
698 @c
699 @c
700 @c
701 @c         Configuring tinc
702 @c
703 @c
704 @c
705 @c
706
707
708 @c ==================================================================
709 @node    Configuration
710 @chapter Configuration
711
712 @menu
713 * Configuration introduction::
714 * Multiple networks::
715 * How connections work::
716 * Configuration files::
717 * Generating keypairs::
718 * Network interfaces::
719 * Example configuration::
720 @end menu
721
722 @c ==================================================================
723 @node    Configuration introduction
724 @section Configuration introduction
725
726 Before actually starting to configure tinc and editing files,
727 make sure you have read this entire section so you know what to expect.
728 Then, make it clear to yourself how you want to organize your VPN:
729 What are the nodes (computers running tinc)?
730 What IP addresses/subnets do they have?
731 What is the network mask of the entire VPN?
732 Do you need special firewall rules?
733 Do you have to set up masquerading or forwarding rules?
734 Do you want to run tinc in router mode or switch mode?
735 These questions can only be answered by yourself,
736 you will not find the answers in this documentation.
737 Make sure you have an adequate understanding of networks in general.
738 @cindex Network Administrators Guide
739 A good resource on networking is the
740 @uref{http://www.linuxdoc.org/LDP/nag2/, Linux Network Administrators Guide}.
741
742 If you have everything clearly pictured in your mind,
743 proceed in the following order:
744 First, generate the configuration files (@file{tinc.conf}, your host configuration file, @file{tinc-up} and perhaps @file{tinc-down}).
745 Then generate the keypairs.
746 Finally, distribute the host configuration files.
747 These steps are described in the subsections below.
748
749
750 @c ==================================================================
751 @node    Multiple networks
752 @section Multiple networks
753
754 @cindex multiple networks
755 @cindex netname
756 In order to allow you to run more than one tinc daemon on one computer,
757 for instance if your computer is part of more than one VPN,
758 you can assign a @var{netname} to your VPN.
759 It is not required if you only run one tinc daemon,
760 it doesn't even have to be the same on all the sites of your VPN,
761 but it is recommended that you choose one anyway.
762
763 We will asume you use a netname throughout this document.
764 This means that you call tincd with the -n argument,
765 which will assign a netname to this daemon.
766
767 The effect of this is that the daemon will set its configuration
768 root to @file{@value{sysconfdir}/tinc/@var{netname}/}, where @var{netname} is your argument to the -n
769 option.  You'll notice that it appears in syslog as @file{tinc.@var{netname}}.
770
771 However, it is not strictly necessary that you call tinc with the -n
772 option.  In this case, the network name would just be empty, and it will
773 be used as such.  tinc now looks for files in @file{@value{sysconfdir}/tinc/}, instead of
774 @file{@value{sysconfdir}/tinc/@var{netname}/}; the configuration file should be @file{@value{sysconfdir}/tinc/tinc.conf},
775 and the host configuration files are now expected to be in @file{@value{sysconfdir}/tinc/hosts/}.
776
777 But it is highly recommended that you use this feature of tinc, because
778 it will be so much clearer whom your daemon talks to.  Hence, we will
779 assume that you use it.
780
781
782 @c ==================================================================
783 @node    How connections work
784 @section How connections work
785
786 When tinc starts up, it parses the command-line options and then
787 reads in the configuration file tinc.conf.
788 If it sees one or more  `ConnectTo' values pointing to other tinc daemons in that file,
789 it will try to connect to those other daemons.
790 Whether this succeeds or not and whether `ConnectTo' is specified or not,
791 tinc will listen for incoming connection from other deamons.
792 If you did specify a `ConnectTo' value and the other side is not responding,
793 tinc will keep retrying.
794 This means that once started, tinc will stay running until you tell it to stop,
795 and failures to connect to other tinc daemons will not stop your tinc daemon
796 for trying again later.
797 This means you don't have to intervene if there are temporary network problems.
798
799 @cindex client
800 @cindex server
801 There is no real distinction between a server and a client in tinc.
802 If you wish, you can view a tinc daemon without a `ConnectTo' value as a server,
803 and one which does specify such a value as a client.
804 It does not matter if two tinc daemons have a `ConnectTo' value pointing to each other however.
805
806
807 @c ==================================================================
808 @node    Configuration files
809 @section Configuration files
810
811 The actual configuration of the daemon is done in the file
812 @file{@value{sysconfdir}/tinc/@var{netname}/tinc.conf} and at least one other file in the directory
813 @file{@value{sysconfdir}/tinc/@var{netname}/hosts/}.
814
815 These file consists of comments (lines started with a #) or assignments
816 in the form of
817
818 @example
819 Variable = Value.
820 @end example
821
822 The variable names are case insensitive, and any spaces, tabs, newlines
823 and carriage returns are ignored.  Note: it is not required that you put
824 in the `=' sign, but doing so improves readability.  If you leave it
825 out, remember to replace it with at least one space character.
826
827 In this section all valid variables are listed in alphabetical order.
828 The default value is given between parentheses,
829 other comments are between square brackets.
830
831 @menu
832 * Main configuration variables::
833 * Host configuration variables::
834 * Scripts::
835 * How to configure::
836 @end menu
837
838
839 @c ==================================================================
840 @node       Main configuration variables
841 @subsection Main configuration variables
842
843 @table @asis
844 @cindex AddressFamily
845 @item AddressFamily = <ipv4|ipv6|any> (any)
846 This option affects the address family of listening and outgoing sockets.
847 If any is selected, then depending on the operating system
848 both IPv4 and IPv6 or just IPv6 listening sockets will be created.
849
850 @cindex BindToAddress
851 @item BindToAddress = <@var{address}> [experimental]
852 If your computer has more than one IPv4 or IPv6 address, tinc
853 will by default listen on all of them for incoming connections.
854 It is possible to bind only to a single address with this variable.
855
856 This option may not work on all platforms.
857
858 @cindex BindToInterface
859 @item BindToInterface = <@var{interface}> [experimental]
860 If you have more than one network interface in your computer, tinc will
861 by default listen on all of them for incoming connections.  It is
862 possible to bind tinc to a single interface like eth0 or ppp0 with this
863 variable.
864
865 This option may not work on all platforms.
866
867 @cindex ConnectTo
868 @item ConnectTo = <@var{name}>
869 Specifies which other tinc daemon to connect to on startup.
870 Multiple ConnectTo variables may be specified,
871 in which case outgoing connections to each specified tinc daemon are made.
872 The names should be known to this tinc daemon
873 (i.e., there should be a host configuration file for the name on the ConnectTo line).
874
875 If you don't specify a host with ConnectTo,
876 tinc won't try to connect to other daemons at all,
877 and will instead just listen for incoming connections.
878
879 @cindex Device
880 @item Device = <@var{device}> (@file{/dev/tap0}, @file{/dev/net/tun} or other depending on platform)
881 The virtual network device to use.
882 Tinc will automatically detect what kind of device it is.
883 Note that you can only use one device per daemon.
884 Under Windows, use @var{Interface} instead of @var{Device}.
885 Note that you can only use one device per daemon.
886 See also @ref{Device files}.
887
888 @cindex GraphDumpFile
889 @item GraphDumpFile = <@var{filename}> [experimental]
890 If this option is present,
891 tinc will dump the current network graph to the file @var{filename}
892 every minute, unless there were no changes to the graph.
893 The file is in a format that can be read by graphviz tools.
894 If @var{filename} starts with a pipe symbol |,
895 then the rest of the filename is interpreted as a shell command
896 that is executed, the graph is then sent to stdin.
897
898 @cindex Hostnames
899 @item Hostnames = <yes|no> (no)
900 This option selects whether IP addresses (both real and on the VPN)
901 should be resolved.  Since DNS lookups are blocking, it might affect
902 tinc's efficiency, even stopping the daemon for a few seconds everytime
903 it does a lookup if your DNS server is not responding.
904
905 This does not affect resolving hostnames to IP addresses from the
906 configuration file.
907
908 @cindex Interface
909 @item Interface = <@var{interface}>
910 Defines the name of the interface corresponding to the virtual network device.
911 Depending on the operating system and the type of device this may or may not actually set the name of the interface.
912 Under Windows, this variable is used to select which network interface will be used.
913 If you specified a Device, this variable is almost always already correctly set.
914
915 @cindex Mode
916 @item Mode = <router|switch|hub> (router)
917 This option selects the way packets are routed to other daemons.
918
919 @table @asis
920 @cindex router
921 @item router
922 In this mode Subnet
923 variables in the host configuration files will be used to form a routing table.
924 Only unicast packets of routable protocols (IPv4 and IPv6) are supported in this mode.
925
926 This is the default mode, and unless you really know you need another mode, don't change it.
927
928 @cindex switch
929 @item switch
930 In this mode the MAC addresses of the packets on the VPN will be used to
931 dynamically create a routing table just like an Ethernet switch does.
932 Unicast, multicast and broadcast packets of every protocol that runs over Ethernet are supported in this mode
933 at the cost of frequent broadcast ARP requests and routing table updates.
934
935 This mode is primarily useful if you want to bridge Ethernet segments.
936
937 @cindex hub
938 @item hub
939 This mode is almost the same as the switch mode, but instead
940 every packet will be broadcast to the other daemons
941 while no routing table is managed.
942 @end table
943
944 @cindex KeyExpire
945 @item KeyExpire = <@var{seconds}> (3600)
946 This option controls the time the encryption keys used to encrypt the data
947 are valid.  It is common practice to change keys at regular intervals to
948 make it even harder for crackers, even though it is thought to be nearly
949 impossible to crack a single key.
950
951 @cindex MACExpire
952 @item MACExpire = <@var{seconds}> (600)
953 This option controls the amount of time MAC addresses are kept before they are removed.
954 This only has effect when Mode is set to "switch".
955
956 @cindex Name
957 @item Name = <@var{name}> [required]
958 This is a symbolic name for this connection.  It can be anything
959
960 @cindex PingInterval
961 @item PingInterval = <@var{seconds}> (60)
962 The number of seconds of inactivity that tinc will wait before sending a
963 probe to the other end.
964
965 @cindex PingTimeout
966 @item PingTimeout = <@var{seconds}> (5)
967 The number of seconds to wait for a response to pings or to allow meta
968 connections to block. If the other end doesn't respond within this time,
969 the connection is terminated, and the others will be notified of this.
970
971 @cindex PriorityInheritance
972 @item PriorityInheritance = <yes|no> (no) [experimental]
973 When this option is enabled the value of the TOS field of tunneled IPv4 packets
974 will be inherited by the UDP packets that are sent out.
975
976 @cindex PrivateKey
977 @item PrivateKey = <@var{key}> [obsolete]
978 This is the RSA private key for tinc. However, for safety reasons it is
979 advised to store private keys of any kind in separate files. This prevents
980 accidental eavesdropping if you are editting the configuration file.
981
982 @cindex PrivateKeyFile
983 @item PrivateKeyFile = <@var{path}> (@file{@value{sysconfdir}/tinc/@var{netname}/rsa_key.priv})
984 This is the full path name of the RSA private key file that was
985 generated by @samp{tincctl generate-keys}.  It must be a full path, not a
986 relative directory.
987
988 Note that there must be exactly one of PrivateKey
989 or PrivateKeyFile
990 specified in the configuration file.
991
992 @cindex TunnelServer
993 @item TunnelServer = <yes|no> (no) [experimental]
994 When this option is enabled tinc will no longer forward information between other tinc daemons,
995 and will only allow nodes and subnets on the VPN which are present in the
996 @file{@value{sysconfdir}/tinc/@var{netname}/hosts/} directory.
997
998 @end table
999
1000
1001 @c ==================================================================
1002 @node       Host configuration variables
1003 @subsection Host configuration variables
1004
1005 @table @asis
1006 @cindex Address
1007 @item Address = <@var{IP address}|@var{hostname}> [recommended]
1008 This variable is only required if you want to connect to this host.  It
1009 must resolve to the external IP address where the host can be reached,
1010 not the one that is internal to the VPN.
1011
1012 @cindex Cipher
1013 @item Cipher = <@var{cipher}> (blowfish)
1014 The symmetric cipher algorithm used to encrypt UDP packets.
1015 Any cipher supported by OpenSSL is recognized.
1016 Furthermore, specifying "none" will turn off packet encryption.
1017 It is best to use only those ciphers which support CBC mode.
1018
1019 @cindex Compression
1020 @item Compression = <@var{level}> (0)
1021 This option sets the level of compression used for UDP packets.
1022 Possible values are 0 (off), 1 (fast zlib) and any integer up to 9 (best zlib),
1023 10 (fast lzo) and 11 (best lzo).
1024
1025 @cindex Digest
1026 @item Digest = <@var{digest}> (sha1)
1027 The digest algorithm used to authenticate UDP packets.
1028 Any digest supported by OpenSSL is recognized.
1029 Furthermore, specifying "none" will turn off packet authentication.
1030
1031 @cindex IndirectData
1032 @item IndirectData = <yes|no> (no)
1033 This option specifies whether other tinc daemons besides the one you
1034 specified with ConnectTo can make a direct connection to you.  This is
1035 especially useful if you are behind a firewall and it is impossible to
1036 make a connection from the outside to your tinc daemon.  Otherwise, it
1037 is best to leave this option out or set it to no.
1038
1039 @cindex MACLength
1040 @item MACLength = <@var{bytes}> (4)
1041 The length of the message authentication code used to authenticate UDP packets.
1042 Can be anything from 0
1043 up to the length of the digest produced by the digest algorithm.
1044
1045 @cindex Port
1046 @item Port = <@var{port}> (655)
1047 This is the port this tinc daemon listens on.
1048 You can use decimal portnumbers or symbolic names (as listed in @file{/etc/services}).
1049
1050 @cindex PublicKey
1051 @item PublicKey = <@var{key}> [obsolete]
1052 This is the RSA public key for this host.
1053
1054 @cindex PublicKeyFile
1055 @item PublicKeyFile = <@var{path}> [obsolete]
1056 This is the full path name of the RSA public key file that was generated
1057 by @samp{tincctl generate-keys}.  It must be a full path, not a relative
1058 directory.
1059
1060 @cindex PEM format
1061 From version 1.0pre4 on tinc will store the public key directly into the
1062 host configuration file in PEM format, the above two options then are not
1063 necessary. Either the PEM format is used, or exactly
1064 @strong{one of the above two options} must be specified
1065 in each host configuration file, if you want to be able to establish a
1066 connection with that host.
1067
1068 @cindex Subnet
1069 @item Subnet = <@var{address}[/@var{prefixlength}]>
1070 The subnet which this tinc daemon will serve.
1071 Tinc tries to look up which other daemon it should send a packet to by searching the appropiate subnet.
1072 If the packet matches a subnet,
1073 it will be sent to the daemon who has this subnet in his host configuration file.
1074 Multiple subnet lines can be specified for each daemon.
1075
1076 Subnets can either be single MAC, IPv4 or IPv6 addresses,
1077 in which case a subnet consisting of only that single address is assumed,
1078 or they can be a IPv4 or IPv6 network address with a prefixlength.
1079 Shorthand notations are not supported.
1080 For example, IPv4 subnets must be in a form like 192.168.1.0/24,
1081 where 192.168.1.0 is the network address and 24 is the number of bits set in the netmask.
1082 Note that subnets like 192.168.1.1/24 are invalid!
1083 Read a networking HOWTO/FAQ/guide if you don't understand this.
1084 IPv6 subnets are notated like fec0:0:0:1:0:0:0:0/64.
1085 MAC addresses are notated like 0:1a:2b:3c:4d:5e.
1086
1087 @cindex CIDR notation
1088 Prefixlength is the number of bits set to 1 in the netmask part; for
1089 example: netmask 255.255.255.0 would become /24, 255.255.252.0 becomes
1090 /22. This conforms to standard CIDR notation as described in
1091 @uref{ftp://ftp.isi.edu/in-notes/rfc1519.txt, RFC1519}
1092
1093 @cindex TCPonly
1094 @item TCPonly = <yes|no> (no) [experimental]
1095 If this variable is set to yes, then the packets are tunnelled over a
1096 TCP connection instead of a UDP connection.  This is especially useful
1097 for those who want to run a tinc daemon from behind a masquerading
1098 firewall, or if UDP packet routing is disabled somehow.
1099 Setting this options also implicitly sets IndirectData.
1100 @end table
1101
1102
1103 @c ==================================================================
1104 @node       Scripts
1105 @subsection Scripts
1106
1107 @cindex scripts
1108 Apart from reading the server and host configuration files,
1109 tinc can also run scripts at certain moments.
1110 Under Windows (not Cygwin), the scripts should have the extension .bat.
1111
1112 @table @file
1113 @cindex tinc-up
1114 @item @value{sysconfdir}/tinc/@var{netname}/tinc-up
1115 This is the most important script.
1116 If it is present it will be executed right after the tinc daemon has been
1117 started and has connected to the virtual network device.
1118 It should be used to set up the corresponding network interface,
1119 but can also be used to start other things.
1120 Under Windows you can use the Network Connections control panel instead of creating this script.
1121
1122 @cindex tinc-down
1123 @item @value{sysconfdir}/tinc/@var{netname}/tinc-down
1124 This script is started right before the tinc daemon quits.
1125
1126 @item @value{sysconfdir}/tinc/@var{netname}/hosts/@var{host}-up
1127 This script is started when the tinc daemon with name @var{host} becomes reachable.
1128
1129 @item @value{sysconfdir}/tinc/@var{netname}/hosts/@var{host}-down
1130 This script is started when the tinc daemon with name @var{host} becomes unreachable.
1131
1132 @item @value{sysconfdir}/tinc/@var{netname}/host-up
1133 This script is started when any host becomes reachable.
1134
1135 @item @value{sysconfdir}/tinc/@var{netname}/host-down
1136 This script is started when any host becomes unreachable.
1137
1138 @item @value{sysconfdir}/tinc/@var{netname}/subnet-up
1139 This script is started when a Subnet becomes reachable.
1140 The Subnet and the node it belongs to are passed in environment variables.
1141
1142 @item @value{sysconfdir}/tinc/@var{netname}/subnet-down
1143 This script is started when a Subnet becomes unreachable.
1144 @end table
1145
1146 @cindex environment variables
1147 The scripts are started without command line arguments,
1148 but can make use of certain environment variables.
1149 Under UNIX like operating systems the names of environment variables must be preceded by a $ in scripts.
1150 Under Windows, in @file{.bat} files, they have to be put between % signs.
1151
1152 @table @env
1153 @cindex NETNAME
1154 @item NETNAME
1155 If a netname was specified, this environment variable contains it.
1156
1157 @cindex NAME
1158 @item NAME
1159 Contains the name of this tinc daemon.
1160
1161 @cindex DEVICE
1162 @item DEVICE
1163 Contains the name of the virtual network device that tinc uses.
1164
1165 @cindex INTERFACE
1166 @item INTERFACE
1167 Contains the name of the virtual network interface that tinc uses.
1168 This should be used for commands like ifconfig.
1169
1170 @cindex NODE
1171 @item NODE
1172 When a host becomes (un)reachable, this is set to its name.
1173 If a subnet becomes (un)reachable, this is set to the owner of that subnet.
1174
1175 @cindex REMOTEADDRESS
1176 @item REMOTEADDRESS
1177 When a host becomes (un)reachable, this is set to its real address.
1178
1179 @cindex REMOTEPORT
1180 @item REMOTEPORT
1181 When a host becomes (un)reachable,
1182 this is set to the port number it uses for communication with other tinc daemons.
1183
1184 @cindex SUBNET
1185 @item SUBNET
1186 When a subnet becomes (un)reachable, this is set to the subnet.
1187
1188 @end table
1189
1190
1191 @c ==================================================================
1192 @node       How to configure
1193 @subsection How to configure
1194
1195 @subsubheading Step 1.  Creating the main configuration file
1196
1197 The main configuration file will be called @file{@value{sysconfdir}/tinc/@var{netname}/tinc.conf}.
1198 Adapt the following example to create a basic configuration file:
1199
1200 @example
1201 Name = @var{yourname}
1202 Device = @file{/dev/tap0}
1203 @end example
1204
1205 Then, if you know to which other tinc daemon(s) yours is going to connect,
1206 add `ConnectTo' values.
1207
1208 @subsubheading Step 2.  Creating your host configuration file
1209
1210 If you added a line containing `Name = yourname' in the main configuarion file,
1211 you will need to create a host configuration file @file{@value{sysconfdir}/tinc/@var{netname}/hosts/yourname}.
1212 Adapt the following example to create a host configuration file:
1213
1214 @example
1215 Address = your.real.hostname.org
1216 Subnet = 192.168.1.0/24
1217 @end example
1218
1219 You can also use an IP address instead of a hostname.
1220 The `Subnet' specifies the address range that is local for @emph{your part of the VPN only}.
1221 If you have multiple address ranges you can specify more than one `Subnet'.
1222 You might also need to add a `Port' if you want your tinc daemon to run on a different port number than the default (655).
1223
1224
1225 @c ==================================================================
1226 @node    Generating keypairs
1227 @section Generating keypairs
1228
1229 @cindex key generation
1230 Now that you have already created the main configuration file and your host configuration file,
1231 you can easily create a public/private keypair by entering the following command:
1232
1233 @example
1234 tincctl -n @var{netname} generate-keys
1235 @end example
1236
1237 Tinc will generate a public and a private key and ask you where to put them.
1238 Just press enter to accept the defaults.
1239
1240
1241 @c ==================================================================
1242 @node    Network interfaces
1243 @section Network interfaces
1244
1245 Before tinc can start transmitting data over the tunnel, it must
1246 set up the virtual network interface.
1247
1248 First, decide which IP addresses you want to have associated with these
1249 devices, and what network mask they must have.
1250
1251 Tinc will open a virtual network device (@file{/dev/tun}, @file{/dev/tap0} or similar),
1252 which will also create a network interface called something like @samp{tun0}, @samp{tap0}.
1253 If you are using the Linux tun/tap driver, the network interface will by default have the same name as the @var{netname}.
1254 Under Windows you can change the name of the network interface from the Network Connections control panel.
1255
1256 @cindex tinc-up
1257 You can configure the network interface by putting ordinary ifconfig, route, and other commands
1258 to a script named @file{@value{sysconfdir}/tinc/@var{netname}/tinc-up}.
1259 When tinc starts, this script will be executed. When tinc exits, it will execute the script named
1260 @file{@value{sysconfdir}/tinc/@var{netname}/tinc-down}, but normally you don't need to create that script.
1261
1262 An example @file{tinc-up} script:
1263
1264 @example
1265 #!/bin/sh
1266 ifconfig $INTERFACE 192.168.1.1 netmask 255.255.0.0
1267 @end example
1268
1269 This script gives the interface an IP address and a netmask.
1270 The kernel will also automatically add a route to this interface, so normally you don't need
1271 to add route commands to the @file{tinc-up} script.
1272 The kernel will also bring the interface up after this command.
1273 @cindex netmask
1274 The netmask is the mask of the @emph{entire} VPN network, not just your
1275 own subnet.
1276
1277 The exact syntax of the ifconfig and route commands differs from platform to platform.
1278 You can look up the commands for setting addresses and adding routes in @ref{Platform specific information},
1279 but it is best to consult the manpages of those utilities on your platform.
1280
1281
1282 @c ==================================================================
1283 @node    Example configuration
1284 @section Example configuration
1285
1286
1287 @cindex example
1288 Imagine the following situation.  Branch A of our example `company' wants to connect
1289 three branch offices in B, C and D using the Internet.  All four offices
1290 have a 24/7 connection to the Internet.
1291
1292 A is going to serve as the center of the network.  B and C will connect
1293 to A, and D will connect to C.  Each office will be assigned their own IP
1294 network, 10.x.0.0.
1295
1296 @example
1297 A: net 10.1.0.0 mask 255.255.0.0 gateway 10.1.54.1 internet IP 1.2.3.4
1298 B: net 10.2.0.0 mask 255.255.0.0 gateway 10.2.1.12 internet IP 2.3.4.5
1299 C: net 10.3.0.0 mask 255.255.0.0 gateway 10.3.69.254 internet IP 3.4.5.6
1300 D: net 10.4.0.0 mask 255.255.0.0 gateway 10.4.3.32 internet IP 4.5.6.7
1301 @end example
1302
1303 Here, ``gateway'' is the VPN IP address of the machine that is running the
1304 tincd, and ``internet IP'' is the IP address of the firewall, which does not
1305 need to run tincd, but it must do a port forwarding of TCP and UDP on port
1306 655 (unless otherwise configured).
1307
1308 In this example, it is assumed that eth0 is the interface that points to
1309 the inner (physical) LAN of the office, although this could also be the
1310 same as the interface that leads to the Internet.  The configuration of
1311 the real interface is also shown as a comment, to give you an idea of
1312 how these example host is set up. All branches use the netname `company'
1313 for this particular VPN.
1314
1315 @subsubheading For Branch A
1316
1317 @emph{BranchA} would be configured like this:
1318
1319 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1320
1321 @example
1322 # Real interface of internal network:
1323 # ifconfig eth0 10.1.54.1 netmask 255.255.0.0
1324
1325 ifconfig $INTERFACE 10.1.54.1 netmask 255.0.0.0
1326 @end example
1327
1328 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1329
1330 @example
1331 Name = BranchA
1332 Device = /dev/tap0
1333 @end example
1334
1335 On all hosts, @file{@value{sysconfdir}/tinc/company/hosts/BranchA} contains:
1336
1337 @example
1338 Subnet = 10.1.0.0/16
1339 Address = 1.2.3.4
1340
1341 -----BEGIN RSA PUBLIC KEY-----
1342 ...
1343 -----END RSA PUBLIC KEY-----
1344 @end example
1345
1346 Note that the IP addresses of eth0 and tap0 are the same.
1347 This is quite possible, if you make sure that the netmasks of the interfaces are different.
1348 It is in fact recommended to give give both real internal network interfaces and tap interfaces the same IP address,
1349 since that will make things a lot easier to remember and set up.
1350
1351
1352 @subsubheading For Branch B
1353
1354 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1355
1356 @example
1357 # Real interface of internal network:
1358 # ifconfig eth0 10.2.43.8 netmask 255.255.0.0
1359
1360 ifconfig $INTERFACE 10.2.1.12 netmask 255.0.0.0
1361 @end example
1362
1363 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1364
1365 @example
1366 Name = BranchB
1367 ConnectTo = BranchA
1368 @end example
1369
1370 Note here that the internal address (on eth0) doesn't have to be the
1371 same as on the tap0 device.  Also, ConnectTo is given so that no-one can
1372 connect to this node.
1373
1374 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchB}:
1375
1376 @example
1377 Subnet = 10.2.0.0/16
1378 Address = 2.3.4.5
1379
1380 -----BEGIN RSA PUBLIC KEY-----
1381 ...
1382 -----END RSA PUBLIC KEY-----
1383 @end example
1384
1385
1386 @subsubheading For Branch C
1387
1388 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1389
1390 @example
1391 # Real interface of internal network:
1392 # ifconfig eth0 10.3.69.254 netmask 255.255.0.0
1393
1394 ifconfig $INTERFACE 10.3.69.254 netmask 255.0.0.0
1395 @end example
1396
1397 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1398
1399 @example
1400 Name = BranchC
1401 ConnectTo = BranchA
1402 Device = /dev/tap1
1403 @end example
1404
1405 C already has another daemon that runs on port 655, so they have to
1406 reserve another port for tinc. It knows the portnumber it has to listen on
1407 from it's own host configuration file.
1408
1409 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchC}:
1410
1411 @example
1412 Address = 3.4.5.6
1413 Subnet = 10.3.0.0/16
1414 Port = 2000
1415
1416 -----BEGIN RSA PUBLIC KEY-----
1417 ...
1418 -----END RSA PUBLIC KEY-----
1419 @end example
1420
1421
1422 @subsubheading For Branch D
1423
1424 In @file{@value{sysconfdir}/tinc/company/tinc-up}:
1425
1426 @example
1427 # Real interface of internal network:
1428 # ifconfig eth0 10.4.3.32 netmask 255.255.0.0
1429
1430 ifconfig $INTERFACE 10.4.3.32 netmask 255.0.0.0
1431 @end example
1432
1433 and in @file{@value{sysconfdir}/tinc/company/tinc.conf}:
1434
1435 @example
1436 Name = BranchD
1437 ConnectTo = BranchC
1438 Device = /dev/net/tun
1439 @end example
1440
1441 D will be connecting to C, which has a tincd running for this network on
1442 port 2000. It knows the port number from the host configuration file.
1443 Also note that since D uses the tun/tap driver, the network interface
1444 will not be called `tun' or `tap0' or something like that, but will
1445 have the same name as netname.
1446
1447 On all hosts, in @file{@value{sysconfdir}/tinc/company/hosts/BranchD}:
1448
1449 @example
1450 Subnet = 10.4.0.0/16
1451 Address = 4.5.6.7
1452
1453 -----BEGIN RSA PUBLIC KEY-----
1454 ...
1455 -----END RSA PUBLIC KEY-----
1456 @end example
1457
1458 @subsubheading Key files
1459
1460 A, B, C and D all have generated a public/private keypair with the following command:
1461
1462 @example
1463 tincctl -n company generate-keys
1464 @end example
1465
1466 The private key is stored in @file{@value{sysconfdir}/tinc/company/rsa_key.priv},
1467 the public key is put into the host configuration file in the @file{@value{sysconfdir}/tinc/company/hosts/} directory.
1468 During key generation, tinc automatically guesses the right filenames based on the -n option and
1469 the Name directive in the @file{tinc.conf} file (if it is available).
1470
1471 @subsubheading Starting
1472
1473 After each branch has finished configuration and they have distributed
1474 the host configuration files amongst them, they can start their tinc daemons.
1475 They don't necessarily have to wait for the other branches to have started
1476 their daemons, tinc will try connecting until they are available.
1477
1478
1479 @c ==================================================================
1480 @node    Running tinc
1481 @chapter Running tinc
1482
1483 If everything else is done, you can start tinc by typing the following command:
1484
1485 @example
1486 tincd -n @var{netname}
1487 @end example
1488
1489 @cindex daemon
1490 Tinc will detach from the terminal and continue to run in the background like a good daemon.
1491 If there are any problems however you can try to increase the debug level
1492 and look in the syslog to find out what the problems are.
1493
1494 @menu
1495 * Runtime options::
1496 * Signals::
1497 * Debug levels::
1498 * Solving problems::
1499 * Error messages::
1500 * Sending bug reports::
1501 @end menu
1502
1503
1504 @c ==================================================================
1505 @node    Runtime options
1506 @section Runtime options
1507
1508 Besides the settings in the configuration file, tinc also accepts some
1509 command line options.
1510
1511 @cindex command line
1512 @cindex runtime options
1513 @cindex options
1514 @c from the manpage
1515 @table @option
1516 @item -c, --config=@var{path}
1517 Read configuration options from the directory @var{path}.  The default is
1518 @file{@value{sysconfdir}/tinc/@var{netname}/}.
1519
1520 @item -D, --no-detach
1521 Don't fork and detach.
1522 This will also disable the automatic restart mechanism for fatal errors.
1523
1524 @cindex debug level
1525 @item -d, --debug=@var{level}
1526 Set debug level to @var{level}.  The higher the debug level, the more gets
1527 logged.  Everything goes via syslog.
1528
1529 @item -n, --net=@var{netname}
1530 Use configuration for net @var{netname}. @xref{Multiple networks}.
1531
1532 @item --controlsocket=@var{filename}
1533 Open control socket at @var{filename}. If unspecified, the default is
1534 @file{@value{localstatedir}/run/tinc.@var{netname}.control}.
1535
1536 @item -L, --mlock
1537 Lock tinc into main memory.
1538 This will prevent sensitive data like shared private keys to be written to the system swap files/partitions.
1539
1540 @item --logfile[=@var{file}]
1541 Write log entries to a file instead of to the system logging facility.
1542 If @var{file} is omitted, the default is @file{@value{localstatedir}/log/tinc.@var{netname}.log}.
1543
1544 @item --bypass-security
1545 Disables encryption and authentication.
1546 Only useful for debugging.
1547
1548 @item --help
1549 Display a short reminder of these runtime options and terminate.
1550
1551 @item --version
1552 Output version information and exit.
1553
1554 @end table
1555
1556 @c ==================================================================
1557 @node    Signals
1558 @section Signals
1559
1560 @cindex signals
1561 You can also send the following signals to a running tincd process:
1562
1563 @c from the manpage
1564 @table @samp
1565
1566 @item ALRM
1567 Forces tinc to try to connect to all uplinks immediately.
1568 Usually tinc attempts to do this itself,
1569 but increases the time it waits between the attempts each time it failed,
1570 and if tinc didn't succeed to connect to an uplink the first time after it started,
1571 it defaults to the maximum time of 15 minutes.
1572
1573 @item HUP
1574 Partially rereads configuration files.
1575 Connections to hosts whose host config file are removed are closed.
1576 New outgoing connections specified in @file{tinc.conf} will be made.
1577
1578 @item INT
1579 Temporarily increases debug level to 5.
1580 Send this signal again to revert to the original level.
1581
1582 @item USR1
1583 Dumps the connection list to syslog.
1584
1585 @item USR2
1586 Dumps virtual network device statistics, all known nodes, edges and subnets to syslog.
1587
1588 @item WINCH
1589 Purges all information remembered about unreachable nodes.
1590
1591 @end table
1592
1593 @c ==================================================================
1594 @node    Debug levels
1595 @section Debug levels
1596
1597 @cindex debug levels
1598 The tinc daemon can send a lot of messages to the syslog.
1599 The higher the debug level, the more messages it will log.
1600 Each level inherits all messages of the previous level:
1601
1602 @c from the manpage
1603 @table @samp
1604
1605 @item 0
1606 This will log a message indicating tinc has started along with a version number.
1607 It will also log any serious error.
1608
1609 @item 1
1610 This will log all connections that are made with other tinc daemons.
1611
1612 @item 2
1613 This will log status and error messages from scripts and other tinc daemons.
1614
1615 @item 3
1616 This will log all requests that are exchanged with other tinc daemons. These include
1617 authentication, key exchange and connection list updates.
1618
1619 @item 4
1620 This will log a copy of everything received on the meta socket.
1621
1622 @item 5
1623 This will log all network traffic over the virtual private network.
1624
1625 @end table
1626
1627 @c ==================================================================
1628 @node    Solving problems
1629 @section Solving problems
1630
1631 If tinc starts without problems, but if the VPN doesn't work, you will have to find the cause of the problem.
1632 The first thing to do is to start tinc with a high debug level in the foreground,
1633 so you can directly see everything tinc logs:
1634
1635 @example
1636 tincd -n @var{netname} -d5 -D
1637 @end example
1638
1639 If tinc does not log any error messages, then you might want to check the following things:
1640
1641 @itemize
1642 @item @file{tinc-up} script
1643 Does this script contain the right commands?
1644 Normally you must give the interface the address of this host on the VPN, and the netmask must be big enough so that the entire VPN is covered.
1645
1646 @item Subnet
1647 Does the Subnet (or Subnets) in the host configuration file of this host match the portion of the VPN that belongs to this host?
1648
1649 @item Firewalls and NATs
1650 Do you have a firewall or a NAT device (a masquerading firewall or perhaps an ADSL router that performs masquerading)?
1651 If so, check that it allows TCP and UDP traffic on port 655.
1652 If it masquerades and the host running tinc is behind it, make sure that it forwards TCP and UDP traffic to port 655 to the host running tinc.
1653 You can add @samp{TCPOnly = yes} to your host config file to force tinc to only use a single TCP connection,
1654 this works through most firewalls and NATs.
1655
1656 @end itemize
1657
1658
1659 @c ==================================================================
1660 @node    Error messages
1661 @section Error messages
1662
1663 What follows is a list of the most common error messages you might find in the logs.
1664 Some of them will only be visible if the debug level is high enough.
1665
1666 @table @samp
1667 @item Could not open /dev/tap0: No such device
1668
1669 @itemize
1670 @item You forgot to `modprobe netlink_dev' or `modprobe ethertap'.
1671 @item You forgot to compile `Netlink device emulation' in the kernel.
1672 @end itemize
1673
1674 @item Can't write to /dev/net/tun: No such device
1675
1676 @itemize
1677 @item You forgot to `modprobe tun'.
1678 @item You forgot to compile `Universal TUN/TAP driver' in the kernel.
1679 @item The tun device is located somewhere else in @file{/dev/}.
1680 @end itemize
1681
1682 @item Network address and prefix length do not match!
1683
1684 @itemize
1685 @item The Subnet field must contain a @emph{network} address, trailing bits should be 0.
1686 @item If you only want to use one IP address, set the netmask to /32.
1687 @end itemize
1688
1689 @item Error reading RSA key file `rsa_key.priv': No such file or directory
1690
1691 @itemize
1692 @item You forgot to create a public/private keypair.
1693 @item Specify the complete pathname to the private key file with the @samp{PrivateKeyFile} option.
1694 @end itemize
1695
1696 @item Warning: insecure file permissions for RSA private key file `rsa_key.priv'!
1697
1698 @itemize
1699 @item The private key file is readable by users other than root.
1700 Use chmod to correct the file permissions.
1701 @end itemize
1702
1703 @item Creating metasocket failed: Address family not supported
1704
1705 @itemize
1706 @item By default tinc tries to create both IPv4 and IPv6 sockets.
1707 On some platforms this might not be implemented.
1708 If the logs show @samp{Ready} later on, then at least one metasocket was created,
1709 and you can ignore this message.
1710 You can add @samp{AddressFamily = ipv4} to @file{tinc.conf} to prevent this from happening.
1711 @end itemize
1712
1713 @item Cannot route packet: unknown IPv4 destination 1.2.3.4
1714
1715 @itemize
1716 @item You try to send traffic to a host on the VPN for which no Subnet is known.
1717 @item If it is a broadcast address (ending in .255), it probably is a samba server or a Windows host sending broadcast packets.
1718 You can ignore it.
1719 @end itemize
1720
1721 @item Cannot route packet: ARP request for unknown address 1.2.3.4
1722
1723 @itemize
1724 @item You try to send traffic to a host on the VPN for which no Subnet is known.
1725 @end itemize
1726
1727 @item Packet with destination 1.2.3.4 is looping back to us!
1728
1729 @itemize
1730 @item Something is not configured right. Packets are being sent out to the
1731 virtual network device, but according to the Subnet directives in your host configuration
1732 file, those packets should go to your own host. Most common mistake is that
1733 you have a Subnet line in your host configuration file with a prefix length which is
1734 just as large as the prefix of the virtual network interface. The latter should in almost all
1735 cases be larger. Rethink your configuration.
1736 Note that you will only see this message if you specified a debug
1737 level of 5 or higher!
1738 @item Chances are that a @samp{Subnet = ...} line in the host configuration file of this tinc daemon is wrong.
1739 Change it to a subnet that is accepted locally by another interface,
1740 or if that is not the case, try changing the prefix length into /32. 
1741 @end itemize
1742
1743 @item Node foo (1.2.3.4) is not reachable
1744
1745 @itemize
1746 @item Node foo does not have a connection anymore, its tinc daemon is not running or its connection to the Internet is broken.
1747 @end itemize
1748
1749 @item Received UDP packet from unknown source 1.2.3.4 (port 12345)
1750
1751 @itemize
1752 @item If you see this only sporadically, it is harmless and caused by a node sending packets using an old key.
1753 @item If you see this often and another node is not reachable anymore, then a NAT (masquerading firewall) is changing the source address of UDP packets.
1754 You can add @samp{TCPOnly = yes} to host configuration files to force all VPN traffic to go over a TCP connection.
1755 @end itemize
1756
1757 @item Got bad/bogus/unauthorized REQUEST from foo (1.2.3.4 port 12345)
1758
1759 @itemize
1760 @item Node foo does not have the right public/private keypair.
1761 Generate new keypairs and distribute them again.
1762 @item An attacker tries to gain access to your VPN.
1763 @item A network error caused corruption of metadata sent from foo.
1764 @end itemize
1765
1766 @end table
1767
1768 @c ==================================================================
1769 @node    Sending bug reports
1770 @section Sending bug reports
1771
1772 If you really can't find the cause of a problem, or if you suspect tinc is not working right,
1773 you can send us a bugreport, see @ref{Contact information}.
1774 Be sure to include the following information in your bugreport:
1775
1776 @itemize
1777 @item A clear description of what you are trying to achieve and what the problem is.
1778 @item What platform (operating system, version, hardware architecture) and which version of tinc you use.
1779 @item If compiling tinc fails, a copy of @file{config.log} and the error messages you get.
1780 @item Otherwise, a copy of @file{tinc.conf}, @file{tinc-up} and all files in the @file{hosts/} directory.
1781 @item The output of the commands @samp{ifconfig -a} and @samp{route -n} (or @samp{netstat -rn} if that doesn't work).
1782 @item The output of any command that fails to work as it should (like ping or traceroute).
1783 @end itemize
1784
1785 @c ==================================================================
1786 @node    Controlling tinc
1787 @chapter Controlling tinc
1788
1789 You can control and inspect a running @samp{tincd} through the @samp{tincctl}
1790 command. A quick example:
1791
1792 @example
1793 tincctl -n @var{netname} reload
1794 @end example
1795
1796 @menu
1797 * tincctl runtime options::
1798 * tincctl commands::
1799 @end menu
1800
1801
1802 @c ==================================================================
1803 @node    tincctl runtime options
1804 @section tincctl runtime options
1805
1806 @c from the manpage
1807 @table @option
1808 @item -c, --config=@var{path}
1809 Read configuration options from the directory @var{path}.  The default is
1810 @file{@value{sysconfdir}/tinc/@var{netname}/}.
1811
1812 @item -n, --net=@var{netname}
1813 Use configuration for net @var{netname}. @xref{Multiple networks}.
1814
1815 @item --controlsocket=@var{filename}
1816 Open control socket at @var{filename}. If unspecified, the default is
1817 @file{@value{localstatedir}/run/tinc.@var{netname}.control}.
1818
1819 @item --help
1820 Display a short reminder of runtime options and commands, then terminate.
1821
1822 @item --version
1823 Output version information and exit.
1824
1825 @end table
1826
1827
1828 @c ==================================================================
1829 @node    tincctl commands
1830 @section tincctl commands
1831
1832 @c from the manpage
1833 @table @code
1834
1835 @item start
1836 Start @samp{tincd}.
1837
1838 @item stop
1839 Stop @samp{tincd}.
1840
1841 @item restart
1842 Restart @samp{tincd}.
1843
1844 @item reload
1845 Partially rereads configuration files. Connections to hosts whose host
1846 config files are removed are closed. New outgoing connections specified
1847 in @file{tinc.conf} will be made.
1848
1849 @item pid
1850 Shows the PID of the currently running @samp{tincd}.
1851
1852 @item generate-keys [@var{bits}]
1853 Generate public/private keypair of @var{bits} length. If @var{bits} is not specified,
1854 1024 is the default. tinc will ask where you want to store the files,
1855 but will default to the configuration directory (you can use the -c or -n
1856 option).
1857
1858 @item dump nodes
1859 Dump a list of all known nodes in the VPN.
1860
1861 @item dump edges
1862 Dump a list of all known connections in the VPN.
1863
1864 @item dump subnets
1865 Dump a list of all known subnets in the VPN.
1866
1867 @item dump connections
1868 Dump a list of all meta connections with ourself.
1869
1870 @item dump graph
1871 Dump a graph of the VPN in dotty format.
1872
1873 @end table
1874
1875
1876 @c ==================================================================
1877 @node    Technical information
1878 @chapter Technical information
1879
1880
1881 @menu
1882 * The connection::
1883 * The meta-protocol::
1884 * Security::
1885 @end menu
1886
1887
1888 @c ==================================================================
1889 @node    The connection
1890 @section The connection
1891
1892 @cindex connection
1893 Tinc is a daemon that takes VPN data and transmit that to another host
1894 computer over the existing Internet infrastructure.
1895
1896 @menu
1897 * The UDP tunnel::
1898 * The meta-connection::
1899 @end menu
1900
1901
1902 @c ==================================================================
1903 @node    The UDP tunnel
1904 @subsection The UDP tunnel
1905
1906 @cindex virtual network device
1907 @cindex frame type
1908 The data itself is read from a character device file, the so-called
1909 @emph{virtual network device}.  This device is associated with a network
1910 interface.  Any data sent to this interface can be read from the device,
1911 and any data written to the device gets sent from the interface.
1912 There are two possible types of virtual network devices:
1913 `tun' style, which are point-to-point devices which can only handle IPv4 and/or IPv6 packets,
1914 and `tap' style, which are Ethernet devices and handle complete Ethernet frames.
1915
1916 So when tinc reads an Ethernet frame from the device, it determines its
1917 type. When tinc is in it's default routing mode, it can handle IPv4 and IPv6
1918 packets. Depending on the Subnet lines, it will send the packets off to their destination IP address.
1919 In the `switch' and `hub' mode, tinc will use broadcasts and MAC address discovery
1920 to deduce the destination of the packets.
1921 Since the latter modes only depend on the link layer information,
1922 any protocol that runs over Ethernet is supported (for instance IPX and Appletalk).
1923 However, only `tap' style devices provide this information.
1924
1925 After the destination has been determined,
1926 the packet will be compressed (optionally),
1927 a sequence number will be added to the packet,
1928 the packet will then be encrypted
1929 and a message authentication code will be appended.
1930
1931 @cindex encapsulating
1932 @cindex UDP
1933 When that is done, time has come to actually transport the
1934 packet to the destination computer.  We do this by sending the packet
1935 over an UDP connection to the destination host.  This is called
1936 @emph{encapsulating}, the VPN packet (though now encrypted) is
1937 encapsulated in another IP datagram.
1938
1939 When the destination receives this packet, the same thing happens, only
1940 in reverse.  So it checks the message authentication code, decrypts the contents of the UDP datagram,
1941 checks the sequence number
1942 and writes the decrypted information to its own virtual network device.
1943
1944 If the virtual network device is a `tun' device (a point-to-point tunnel),
1945 there is no problem for the kernel to accept a packet.
1946 However, if it is a `tap' device (this is the only available type on FreeBSD),
1947 the destination MAC address must match that of the virtual network interface.
1948 If tinc is in it's default routing mode, ARP does not work, so the correct destination MAC 
1949 can not be known by the sending host.
1950 Tinc solves this by letting the receiving end detect the MAC address of its own virtual network interface
1951 and overwriting the destination MAC address of the received packet.
1952
1953 In switch or hub modes ARP does work so the sender already knows the correct destination MAC address.
1954 In those modes every interface should have a unique MAC address, so make sure they are not the same.
1955 Because switch and hub modes rely on MAC addresses to function correctly,
1956 these modes cannot be used on the following operating systems which don't have a `tap' style virtual network device:
1957 OpenBSD, NetBSD, Darwin and Solaris.
1958
1959
1960 @c ==================================================================
1961 @node    The meta-connection
1962 @subsection The meta-connection
1963
1964 Having only a UDP connection available is not enough.  Though suitable
1965 for transmitting data, we want to be able to reliably send other
1966 information, such as routing and session key information to somebody.
1967
1968 @cindex TCP
1969 TCP is a better alternative, because it already contains protection
1970 against information being lost, unlike UDP.
1971
1972 So we establish two connections.  One for the encrypted VPN data, and one
1973 for other information, the meta-data.  Hence, we call the second
1974 connection the meta-connection.  We can now be sure that the
1975 meta-information doesn't get lost on the way to another computer.
1976
1977 @cindex data-protocol
1978 @cindex meta-protocol
1979 Like with any communication, we must have a protocol, so that everybody
1980 knows what everything stands for, and how she should react.  Because we
1981 have two connections, we also have two protocols.  The protocol used for
1982 the UDP data is the ``data-protocol,'' the other one is the
1983 ``meta-protocol.''
1984
1985 The reason we don't use TCP for both protocols is that UDP is much
1986 better for encapsulation, even while it is less reliable.  The real
1987 problem is that when TCP would be used to encapsulate a TCP stream
1988 that's on the private network, for every packet sent there would be
1989 three ACKs sent instead of just one.  Furthermore, if there would be
1990 a timeout, both TCP streams would sense the timeout, and both would
1991 start re-sending packets.
1992
1993
1994 @c ==================================================================
1995 @node    The meta-protocol
1996 @section The meta-protocol
1997
1998 The meta protocol is used to tie all tinc daemons together, and
1999 exchange information about which tinc daemon serves which virtual
2000 subnet.
2001
2002 The meta protocol consists of requests that can be sent to the other
2003 side.  Each request has a unique number and several parameters.  All
2004 requests are represented in the standard ASCII character set.  It is
2005 possible to use tools such as telnet or netcat to connect to a tinc
2006 daemon started with the --bypass-security option
2007 and to read and write requests by hand, provided that one
2008 understands the numeric codes sent.
2009
2010 The authentication scheme is described in @ref{Authentication protocol}. After a
2011 successful authentication, the server and the client will exchange all the
2012 information about other tinc daemons and subnets they know of, so that both
2013 sides (and all the other tinc daemons behind them) have their information
2014 synchronised.
2015
2016 @cindex ADD_EDGE
2017 @cindex ADD_SUBNET
2018 @example
2019 message
2020 ------------------------------------------------------------------
2021 ADD_EDGE node1 node2 21.32.43.54 655 222 0
2022           |     |        |       |   |  +-> options
2023           |     |        |       |   +----> weight
2024           |     |        |       +--------> UDP port of node2
2025           |     |        +----------------> real address of node2
2026           |     +-------------------------> name of destination node
2027           +-------------------------------> name of source node
2028
2029 ADD_SUBNET node 192.168.1.0/24
2030             |         |     +--> prefixlength
2031             |         +--------> network address
2032             +------------------> owner of this subnet
2033 ------------------------------------------------------------------
2034 @end example
2035
2036 The ADD_EDGE messages are to inform other tinc daemons that a connection between
2037 two nodes exist. The address of the destination node is available so that
2038 VPN packets can be sent directly to that node.
2039
2040 The ADD_SUBNET messages inform other tinc daemons that certain subnets belong
2041 to certain nodes. tinc will use it to determine to which node a VPN packet has
2042 to be sent.
2043
2044 @cindex DEL_EDGE
2045 @cindex DEL_SUBNET
2046 @example
2047 message
2048 ------------------------------------------------------------------
2049 DEL_EDGE node1 node2
2050            |     +----> name of destination node
2051            +----------> name of source node
2052
2053 DEL_SUBNET node 192.168.1.0/24
2054              |         |     +--> prefixlength
2055              |         +--------> network address
2056              +------------------> owner of this subnet
2057 ------------------------------------------------------------------
2058 @end example
2059
2060 In case a connection between two daemons is closed or broken, DEL_EDGE messages
2061 are sent to inform the other daemons of that fact. Each daemon will calculate a
2062 new route to the the daemons, or mark them unreachable if there isn't any.
2063
2064 @cindex REQ_KEY
2065 @cindex ANS_KEY
2066 @cindex KEY_CHANGED
2067 @example
2068 message
2069 ------------------------------------------------------------------
2070 REQ_KEY origin destination
2071            |       +--> name of the tinc daemon it wants the key from
2072            +----------> name of the daemon that wants the key      
2073
2074 ANS_KEY origin destination 4ae0b0a82d6e0078 91 64 4
2075            |       |       \______________/ |  |  +--> MAC length
2076            |       |               |        |  +-----> digest algorithm
2077            |       |               |        +--------> cipher algorithm
2078            |       |               +--> 128 bits key
2079            |       +--> name of the daemon that wants the key
2080            +----------> name of the daemon that uses this key
2081
2082 KEY_CHANGED origin
2083               +--> daemon that has changed it's packet key
2084 ------------------------------------------------------------------
2085 @end example
2086
2087 The keys used to encrypt VPN packets are not sent out directly. This is
2088 because it would generate a lot of traffic on VPNs with many daemons, and
2089 chances are that not every tinc daemon will ever send a packet to every
2090 other daemon. Instead, if a daemon needs a key it sends a request for it
2091 via the meta connection of the nearest hop in the direction of the
2092 destination.
2093
2094 @cindex PING
2095 @cindex PONG
2096 @example
2097 daemon  message
2098 ------------------------------------------------------------------
2099 origin  PING
2100 dest.   PONG
2101 ------------------------------------------------------------------
2102 @end example
2103
2104 There is also a mechanism to check if hosts are still alive. Since network
2105 failures or a crash can cause a daemon to be killed without properly
2106 shutting down the TCP connection, this is necessary to keep an up to date
2107 connection list. PINGs are sent at regular intervals, except when there
2108 is also some other traffic. A little bit of salt (random data) is added
2109 with each PING and PONG message, to make sure that long sequences of PING/PONG
2110 messages without any other traffic won't result in known plaintext.
2111
2112 This basically covers what is sent over the meta connection by tinc.
2113
2114
2115 @c ==================================================================
2116 @node    Security
2117 @section Security
2118
2119 @cindex TINC
2120 @cindex Cabal
2121 Tinc got its name from ``TINC,'' short for @emph{There Is No Cabal}; the
2122 alleged Cabal was/is an organisation that was said to keep an eye on the
2123 entire Internet.  As this is exactly what you @emph{don't} want, we named
2124 the tinc project after TINC.
2125
2126 @cindex SVPN
2127 But in order to be ``immune'' to eavesdropping, you'll have to encrypt
2128 your data.  Because tinc is a @emph{Secure} VPN (SVPN) daemon, it does
2129 exactly that: encrypt.
2130 Tinc by default uses blowfish encryption with 128 bit keys in CBC mode, 32 bit
2131 sequence numbers and 4 byte long message authentication codes to make sure
2132 eavesdroppers cannot get and cannot change any information at all from the
2133 packets they can intercept. The encryption algorithm and message authentication
2134 algorithm can be changed in the configuration. The length of the message
2135 authentication codes is also adjustable. The length of the key for the
2136 encryption algorithm is always the default length used by OpenSSL.
2137
2138 @menu
2139 * Authentication protocol::
2140 * Encryption of network packets::
2141 * Security issues::
2142 @end menu
2143
2144
2145 @c ==================================================================
2146 @node       Authentication protocol
2147 @subsection Authentication protocol
2148
2149 @cindex authentication
2150 A new scheme for authentication in tinc has been devised, which offers some
2151 improvements over the protocol used in 1.0pre2 and 1.0pre3. Explanation is
2152 below.
2153
2154 @cindex ID
2155 @cindex META_KEY
2156 @cindex CHALLENGE
2157 @cindex CHAL_REPLY
2158 @cindex ACK
2159 @example
2160 daemon  message
2161 --------------------------------------------------------------------------
2162 client  <attempts connection>
2163
2164 server  <accepts connection>
2165
2166 client  ID client 12
2167               |   +---> version
2168               +-------> name of tinc daemon
2169
2170 server  ID server 12
2171               |   +---> version
2172               +-------> name of tinc daemon
2173
2174 client  META_KEY 5f0823a93e35b69e...7086ec7866ce582b
2175                  \_________________________________/
2176                                  +-> RSAKEYLEN bits totally random string S1,
2177                                      encrypted with server's public RSA key
2178
2179 server  META_KEY 6ab9c1640388f8f0...45d1a07f8a672630
2180                  \_________________________________/
2181                                  +-> RSAKEYLEN bits totally random string S2,
2182                                      encrypted with client's public RSA key
2183
2184 From now on:
2185  - the client will symmetrically encrypt outgoing traffic using S1
2186  - the server will symmetrically encrypt outgoing traffic using S2
2187
2188 client  CHALLENGE da02add1817c1920989ba6ae2a49cecbda0
2189                   \_________________________________/
2190                                  +-> CHALLEN bits totally random string H1
2191
2192 server  CHALLENGE 57fb4b2ccd70d6bb35a64c142f47e61d57f
2193                   \_________________________________/
2194                                  +-> CHALLEN bits totally random string H2
2195
2196 client  CHAL_REPLY 816a86
2197                       +-> 160 bits SHA1 of H2
2198
2199 server  CHAL_REPLY 928ffe
2200                       +-> 160 bits SHA1 of H1
2201
2202 After the correct challenge replies are received, both ends have proved
2203 their identity. Further information is exchanged.
2204
2205 client  ACK 655 123 0
2206              |   |  +-> options
2207                  |   +----> estimated weight
2208                  +--------> listening port of client
2209
2210 server  ACK 655 321 0
2211              |   |  +-> options
2212                  |   +----> estimated weight
2213                  +--------> listening port of server
2214 --------------------------------------------------------------------------
2215 @end example
2216
2217 This new scheme has several improvements, both in efficiency and security.
2218
2219 First of all, the server sends exactly the same kind of messages over the wire
2220 as the client. The previous versions of tinc first authenticated the client,
2221 and then the server. This scheme even allows both sides to send their messages
2222 simultaneously, there is no need to wait for the other to send something first.
2223 This means that any calculations that need to be done upon sending or receiving
2224 a message can also be done in parallel. This is especially important when doing
2225 RSA encryption/decryption. Given that these calculations are the main part of
2226 the CPU time spent for the authentication, speed is improved by a factor 2.
2227
2228 Second, only one RSA encrypted message is sent instead of two. This reduces the
2229 amount of information attackers can see (and thus use for a cryptographic
2230 attack). It also improves speed by a factor two, making the total speedup a
2231 factor 4.
2232
2233 Third, and most important:
2234 The symmetric cipher keys are exchanged first, the challenge is done
2235 afterwards. In the previous authentication scheme, because a man-in-the-middle
2236 could pass the challenge/chal_reply phase (by just copying the messages between
2237 the two real tinc daemons), but no information was exchanged that was really
2238 needed to read the rest of the messages, the challenge/chal_reply phase was of
2239 no real use. The man-in-the-middle was only stopped by the fact that only after
2240 the ACK messages were encrypted with the symmetric cipher. Potentially, it
2241 could even send it's own symmetric key to the server (if it knew the server's
2242 public key) and read some of the metadata the server would send it (it was
2243 impossible for the mitm to read actual network packets though). The new scheme
2244 however prevents this.
2245
2246 This new scheme makes sure that first of all, symmetric keys are exchanged. The
2247 rest of the messages are then encrypted with the symmetric cipher. Then, each
2248 side can only read received messages if they have their private key. The
2249 challenge is there to let the other side know that the private key is really
2250 known, because a challenge reply can only be sent back if the challenge is
2251 decrypted correctly, and that can only be done with knowledge of the private
2252 key.
2253
2254 Fourth: the first thing that is sent via the symmetric cipher encrypted
2255 connection is a totally random string, so that there is no known plaintext (for
2256 an attacker) in the beginning of the encrypted stream.
2257
2258
2259 @c ==================================================================
2260 @node       Encryption of network packets
2261 @subsection Encryption of network packets
2262 @cindex encryption
2263
2264 A data packet can only be sent if the encryption key is known to both
2265 parties, and the connection is  activated. If the encryption key is not
2266 known, a request is sent to the destination using the meta connection
2267 to retrieve it. The packet is stored in a queue while waiting for the
2268 key to arrive.
2269
2270 @cindex UDP
2271 The UDP packet containing the network packet from the VPN has the following layout:
2272
2273 @example
2274 ... | IP header | UDP header | seqno | VPN packet | MAC | UDP trailer
2275                              \___________________/\_____/
2276                                        |             |
2277                                        V             +---> digest algorithm
2278                          Encrypted with symmetric cipher
2279 @end example
2280
2281 So, the entire VPN packet is encrypted using a symmetric cipher, including a 32 bits
2282 sequence number that is added in front of the actual VPN packet, to act as a unique
2283 IV for each packet and to prevent replay attacks. A message authentication code
2284 is added to the UDP packet to prevent alteration of packets. By default the
2285 first 4 bytes of the digest are used for this, but this can be changed using
2286 the MACLength configuration variable.
2287
2288 @c ==================================================================
2289 @node    Security issues
2290 @subsection Security issues
2291
2292 In August 2000, we discovered the existence of a security hole in all versions
2293 of tinc up to and including 1.0pre2. This had to do with the way we exchanged
2294 keys. Since then, we have been working on a new authentication scheme to make
2295 tinc as secure as possible. The current version uses the OpenSSL library and
2296 uses strong authentication with RSA keys.
2297
2298 On the 29th of December 2001, Jerome Etienne posted a security analysis of tinc
2299 1.0pre4. Due to a lack of sequence numbers and a message authentication code
2300 for each packet, an attacker could possibly disrupt certain network services or
2301 launch a denial of service attack by replaying intercepted packets. The current
2302 version adds sequence numbers and message authentication codes to prevent such
2303 attacks.
2304
2305 On the 15th of September 2003, Peter Gutmann posted a security analysis of tinc
2306 1.0.1. He argues that the 32 bit sequence number used by tinc is not a good IV,
2307 that tinc's default length of 4 bytes for the MAC is too short, and he doesn't
2308 like tinc's use of RSA during authentication. We do not know of a security hole
2309 in this version of tinc, but tinc's security is not as strong as TLS or IPsec.
2310 We will address these issues in tinc 2.0.
2311
2312 Cryptography is a hard thing to get right. We cannot make any
2313 guarantees. Time, review and feedback are the only things that can
2314 prove the security of any cryptographic product. If you wish to review
2315 tinc or give us feedback, you are stronly encouraged to do so.
2316
2317
2318 @c ==================================================================
2319 @node    Platform specific information
2320 @chapter Platform specific information
2321
2322 @menu
2323 * Interface configuration::
2324 * Routes::
2325 @end menu
2326
2327 @c ==================================================================
2328 @node    Interface configuration
2329 @section Interface configuration
2330
2331 When configuring an interface, one normally assigns it an address and a
2332 netmask.  The address uniquely identifies the host on the network attached to
2333 the interface.  The netmask, combined with the address, forms a subnet.  It is
2334 used to add a route to the routing table instructing the kernel to send all
2335 packets which fall into that subnet to that interface.  Because all packets for
2336 the entire VPN should go to the virtual network interface used by tinc, the
2337 netmask should be such that it encompasses the entire VPN.
2338
2339 For IPv4 addresses:
2340
2341 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
2342 @item Linux
2343 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2344 @item Linux iproute2
2345 @tab @code{ip addr add} @var{address}@code{/}@var{prefixlength} @code{dev} @var{interface}
2346 @item FreeBSD
2347 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2348 @item OpenBSD
2349 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2350 @item NetBSD
2351 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2352 @item Solaris
2353 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2354 @item Darwin (MacOS/X)
2355 @tab @code{ifconfig} @var{interface} @var{address} @code{netmask} @var{netmask}
2356 @item Windows
2357 @tab @code{netsh interface ip set address} @var{interface} @code{static} @var{address} @var{netmask}
2358 @end multitable
2359
2360
2361 For IPv6 addresses:
2362
2363 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
2364 @item Linux
2365 @tab @code{ifconfig} @var{interface} @code{add} @var{address}@code{/}@var{prefixlength}
2366 @item FreeBSD
2367 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
2368 @item OpenBSD
2369 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
2370 @item NetBSD
2371 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
2372 @item Solaris
2373 @tab @code{ifconfig} @var{interface} @code{inet6 plumb up}
2374 @item
2375 @tab @code{ifconfig} @var{interface} @code{inet6 addif} @var{address} @var{address}
2376 @item Darwin (MacOS/X)
2377 @tab @code{ifconfig} @var{interface} @code{inet6} @var{address} @code{prefixlen} @var{prefixlength}
2378 @item Windows
2379 @tab @code{netsh interface ipv6 add address} @var{interface} @code{static} @var{address}/@var{prefixlength}
2380 @end multitable
2381
2382
2383 @c ==================================================================
2384 @node    Routes
2385 @section Routes
2386
2387 In some cases it might be necessary to add more routes to the virtual network
2388 interface.  There are two ways to indicate which interface a packet should go
2389 to, one is to use the name of the interface itself, another way is to specify
2390 the (local) address that is assigned to that interface (@var{local_address}). The
2391 former way is unambiguous and therefore preferable, but not all platforms
2392 support this.
2393
2394 Adding routes to IPv4 subnets:
2395
2396 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
2397 @item Linux
2398 @tab @code{route add -net} @var{network_address} @code{netmask} @var{netmask} @var{interface}
2399 @item Linux iproute2
2400 @tab @code{ip route add} @var{network_address}@code{/}@var{prefixlength} @code{dev} @var{interface}
2401 @item FreeBSD
2402 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2403 @item OpenBSD
2404 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2405 @item NetBSD
2406 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2407 @item Solaris
2408 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address} @code{-interface}
2409 @item Darwin (MacOS/X)
2410 @tab @code{route add} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2411 @item Windows
2412 @tab @code{netsh routing ip add persistentroute} @var{network_address} @var{netmask} @var{interface} @var{local_address}
2413 @end multitable
2414
2415 Adding routes to IPv6 subnets:
2416
2417 @multitable {Darwin (MacOS/X)} {ifconfig route add -bla network address netmask netmask prefixlength interface}
2418 @item Linux
2419 @tab @code{route add -A inet6} @var{network_address}@code{/}@var{prefixlength} @var{interface}
2420 @item Linux iproute2
2421 @tab @code{ip route add} @var{network_address}@code{/}@var{prefixlength} @code{dev} @var{interface}
2422 @item FreeBSD
2423 @tab @code{route add -inet6} @var{network_address}@code{/}@var{prefixlength} @var{local_address}
2424 @item OpenBSD
2425 @tab @code{route add -inet6} @var{network_address} @var{local_address} @code{-prefixlen} @var{prefixlength}
2426 @item NetBSD
2427 @tab @code{route add -inet6} @var{network_address} @var{local_address} @code{-prefixlen} @var{prefixlength}
2428 @item Solaris
2429 @tab @code{route add -inet6} @var{network_address}@code{/}@var{prefixlength} @var{local_address} @code{-interface}
2430 @item Darwin (MacOS/X)
2431 @tab ?
2432 @item Windows
2433 @tab @code{netsh interface ipv6 add route} @var{network address}/@var{prefixlength} @var{interface}
2434 @end multitable
2435
2436
2437 @c ==================================================================
2438 @node    About us
2439 @chapter About us
2440
2441
2442 @menu
2443 * Contact information::
2444 * Authors::
2445 @end menu
2446
2447
2448 @c ==================================================================
2449 @node    Contact information
2450 @section Contact information
2451
2452 @cindex website
2453 Tinc's website is at @url{http://www.tinc-vpn.org/},
2454 this server is located in the Netherlands.
2455
2456 @cindex IRC
2457 We have an IRC channel on the FreeNode and OFTC IRC networks. Connect to
2458 @uref{http://www.freenode.net/, irc.freenode.net}
2459 or
2460 @uref{http://www.oftc.net/, irc.oftc.net}
2461 and join channel #tinc.
2462
2463
2464 @c ==================================================================
2465 @node    Authors
2466 @section Authors
2467
2468 @table @asis
2469 @item Ivo Timmermans (zarq) (@email{ivo@@tinc-vpn.org})
2470 @item Guus Sliepen (guus) (@email{guus@@tinc-vpn.org})
2471 @end table
2472
2473 We have received a lot of valuable input from users.  With their help,
2474 tinc has become the flexible and robust tool that it is today.  We have
2475 composed a list of contributions, in the file called @file{THANKS} in
2476 the source distribution.
2477
2478
2479 @c ==================================================================
2480 @node    Concept Index
2481 @unnumbered Concept Index
2482
2483 @c ==================================================================
2484 @printindex cp
2485
2486
2487 @c ==================================================================
2488 @contents
2489 @bye