958947721f4446a4d2fd3eebf6dfbb5cb593e92c
[tinc] / src / graph.c
1 /*
2     graph.c -- graph algorithms
3     Copyright (C) 2001-2006 Guus Sliepen <guus@tinc-vpn.org>,
4                   2001-2005 Ivo Timmermans
5
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20     $Id$
21 */
22
23 /* We need to generate two trees from the graph:
24
25    1. A minimum spanning tree for broadcasts,
26    2. A single-source shortest path tree for unicasts.
27
28    Actually, the first one alone would suffice but would make unicast packets
29    take longer routes than necessary.
30
31    For the MST algorithm we can choose from Prim's or Kruskal's. I personally
32    favour Kruskal's, because we make an extra AVL tree of edges sorted on
33    weights (metric). That tree only has to be updated when an edge is added or
34    removed, and during the MST algorithm we just have go linearly through that
35    tree, adding safe edges until #edges = #nodes - 1. The implementation here
36    however is not so fast, because I tried to avoid having to make a forest and
37    merge trees.
38
39    For the SSSP algorithm Dijkstra's seems to be a nice choice. Currently a
40    simple breadth-first search is presented here.
41
42    The SSSP algorithm will also be used to determine whether nodes are directly,
43    indirectly or not reachable from the source. It will also set the correct
44    destination address and port of a node if possible.
45 */
46
47 #include "system.h"
48
49 #include "avl_tree.h"
50 #include "config.h"
51 #include "connection.h"
52 #include "device.h"
53 #include "edge.h"
54 #include "logger.h"
55 #include "netutl.h"
56 #include "node.h"
57 #include "process.h"
58 #include "subnet.h"
59 #include "utils.h"
60
61 /* Implementation of Kruskal's algorithm.
62    Running time: O(EN)
63    Please note that sorting on weight is already done by add_edge().
64 */
65
66 void mst_kruskal(void)
67 {
68         avl_node_t *node, *next;
69         edge_t *e;
70         node_t *n;
71         connection_t *c;
72         int nodes = 0;
73         int safe_edges = 0;
74         bool skipped;
75
76         cp();
77         
78         /* Clear MST status on connections */
79
80         for(node = connection_tree->head; node; node = node->next) {
81                 c = node->data;
82                 c->status.mst = false;
83         }
84
85         /* Do we have something to do at all? */
86
87         if(!edge_weight_tree->head)
88                 return;
89
90         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Running Kruskal's algorithm:");
91
92         /* Clear visited status on nodes */
93
94         for(node = node_tree->head; node; node = node->next) {
95                 n = node->data;
96                 n->status.visited = false;
97                 nodes++;
98         }
99
100         /* Starting point */
101
102         for(node = edge_weight_tree->head; node; node = node->next) {
103                 e = node->data;
104                 if(e->from->status.reachable) {
105                         e->from->status.visited = true;
106                         break;
107                 }
108         }
109
110         /* Add safe edges */
111
112         for(skipped = false, node = edge_weight_tree->head; node; node = next) {
113                 next = node->next;
114                 e = node->data;
115
116                 if(!e->reverse || e->from->status.visited == e->to->status.visited) {
117                         skipped = true;
118                         continue;
119                 }
120
121                 e->from->status.visited = true;
122                 e->to->status.visited = true;
123
124                 if(e->connection)
125                         e->connection->status.mst = true;
126
127                 if(e->reverse->connection)
128                         e->reverse->connection->status.mst = true;
129
130                 safe_edges++;
131
132                 ifdebug(SCARY_THINGS) logger(LOG_DEBUG, " Adding edge %s - %s weight %d", e->from->name,
133                                    e->to->name, e->weight);
134
135                 if(skipped) {
136                         skipped = false;
137                         next = edge_weight_tree->head;
138                         continue;
139                 }
140         }
141
142         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Done, counted %d nodes and %d safe edges.", nodes,
143                            safe_edges);
144 }
145
146 /* Implementation of a simple breadth-first search algorithm.
147    Running time: O(E)
148 */
149
150 void sssp_bfs(void)
151 {
152         avl_node_t *node, *next, *to;
153         edge_t *e;
154         node_t *n;
155         list_t *todo_list;
156         list_node_t *from, *todonext;
157         bool indirect;
158         char *name;
159         char *address, *port;
160         char *envp[7];
161         int i;
162
163         cp();
164
165         todo_list = list_alloc(NULL);
166
167         /* Clear visited status on nodes */
168
169         for(node = node_tree->head; node; node = node->next) {
170                 n = node->data;
171                 n->status.visited = false;
172                 n->status.indirect = true;
173         }
174
175         /* Begin with myself */
176
177         myself->status.visited = true;
178         myself->status.indirect = false;
179         myself->nexthop = myself;
180         myself->via = myself;
181         list_insert_head(todo_list, myself);
182
183         /* Loop while todo_list is filled */
184
185         for(from = todo_list->head; from; from = todonext) {    /* "from" is the node from which we start */
186                 n = from->data;
187
188                 for(to = n->edge_tree->head; to; to = to->next) {       /* "to" is the edge connected to "from" */
189                         e = to->data;
190
191                         if(!e->reverse)
192                                 continue;
193
194                         /* Situation:
195
196                                    /
197                                   /
198                            ----->(n)---e-->(e->to)
199                                   \
200                                    \
201
202                            Where e is an edge, (n) and (e->to) are nodes.
203                            n->address is set to the e->address of the edge left of n to n.
204                            We are currently examining the edge e right of n from n:
205
206                            - If e->reverse->address != n->address, then e->to is probably
207                              not reachable for the nodes left of n. We do as if the indirectdata
208                              flag is set on edge e.
209                            - If edge e provides for better reachability of e->to, update
210                              e->to and (re)add it to the todo_list to (re)examine the reachability
211                              of nodes behind it.
212                          */
213
214                         indirect = n->status.indirect || e->options & OPTION_INDIRECT
215                                 || ((n != myself) && sockaddrcmp(&n->address, &e->reverse->address));
216
217                         if(e->to->status.visited
218                            && (!e->to->status.indirect || indirect))
219                                 continue;
220
221                         e->to->status.visited = true;
222                         e->to->status.indirect = indirect;
223                         e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
224                         e->to->via = indirect ? n->via : e->to;
225                         e->to->options = e->options;
226
227                         if(sockaddrcmp(&e->to->address, &e->address)) {
228                                 node = avl_unlink(node_udp_tree, e->to);
229                                 sockaddrfree(&e->to->address);
230                                 sockaddrcpy(&e->to->address, &e->address);
231
232                                 if(e->to->hostname)
233                                         free(e->to->hostname);
234
235                                 e->to->hostname = sockaddr2hostname(&e->to->address);
236
237                                 if(node)
238                                         avl_insert_node(node_udp_tree, node);
239
240                                 if(e->to->options & OPTION_PMTU_DISCOVERY) {
241                                         e->to->mtuprobes = 0;
242                                         e->to->minmtu = 0;
243                                         e->to->maxmtu = MTU;
244                                         if(e->to->status.validkey)
245                                                 send_mtu_probe(e->to);
246                                 }
247                         }
248
249                         list_insert_tail(todo_list, e->to);
250                 }
251
252                 todonext = from->next;
253                 list_delete_node(todo_list, from);
254         }
255
256         list_free(todo_list);
257
258         /* Check reachability status. */
259
260         for(node = node_tree->head; node; node = next) {
261                 next = node->next;
262                 n = node->data;
263
264                 if(n->status.visited != n->status.reachable) {
265                         n->status.reachable = !n->status.reachable;
266
267                         if(n->status.reachable) {
268                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became reachable"),
269                                            n->name, n->hostname);
270                                 avl_insert(node_udp_tree, n);
271                         } else {
272                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became unreachable"),
273                                            n->name, n->hostname);
274                                 avl_delete(node_udp_tree, n);
275                         }
276
277                         n->status.validkey = false;
278                         n->status.waitingforkey = false;
279
280                         n->maxmtu = MTU;
281                         n->minmtu = 0;
282                         n->mtuprobes = 0;
283
284                         asprintf(&envp[0], "NETNAME=%s", netname ? : "");
285                         asprintf(&envp[1], "DEVICE=%s", device ? : "");
286                         asprintf(&envp[2], "INTERFACE=%s", iface ? : "");
287                         asprintf(&envp[3], "NODE=%s", n->name);
288                         sockaddr2str(&n->address, &address, &port);
289                         asprintf(&envp[4], "REMOTEADDRESS=%s", address);
290                         asprintf(&envp[5], "REMOTEPORT=%s", port);
291                         envp[6] = NULL;
292
293                         execute_script(n->status.reachable ? "host-up" : "host-down", envp);
294
295                         asprintf(&name,
296                                          n->status.reachable ? "hosts/%s-up" : "hosts/%s-down",
297                                          n->name);
298                         execute_script(name, envp);
299
300                         free(name);
301                         free(address);
302                         free(port);
303
304                         for(i = 0; i < 6; i++)
305                                 free(envp[i]);
306
307                         subnet_update(n, NULL, n->status.reachable);
308                 }
309         }
310 }
311
312 /* Dump nodes and edges to a graphviz file.
313            
314    The file can be converted to an image with
315    dot -Tpng graph_filename -o image_filename.png -Gconcentrate=true
316 */
317
318 static void dump_graph(int fd, short events, void *data)
319 {
320         avl_node_t *node;
321         node_t *n;
322         edge_t *e;
323         char *filename = NULL, *tmpname = NULL;
324         FILE *file;
325         
326         if(!get_config_string(lookup_config(config_tree, "GraphDumpFile"), &filename))
327                 return;
328
329         ifdebug(PROTOCOL) logger(LOG_NOTICE, "Dumping graph");
330         
331         if(filename[0] == '|') {
332                 file = popen(filename + 1, "w");
333         } else {
334                 asprintf(&tmpname, "%s.new", filename);
335                 file = fopen(tmpname, "w");
336         }
337
338         if(!file) {
339                 logger(LOG_ERR, "Unable to open graph dump file %s: %s", filename, strerror(errno));
340                 free(tmpname);
341                 return;
342         }
343
344         fprintf(file, "digraph {\n");
345         
346         /* dump all nodes first */
347         for(node = node_tree->head; node; node = node->next) {
348                 n = node->data;
349                 fprintf(file, " %s [label = \"%s\"];\n", n->name, n->name);
350         }
351
352         /* now dump all edges */
353         for(node = edge_weight_tree->head; node; node = node->next) {
354                 e = node->data;
355                 fprintf(file, " %s -> %s;\n", e->from->name, e->to->name);
356         }
357
358         fprintf(file, "}\n");   
359         
360         if(filename[0] == '|') {
361                 pclose(file);
362         } else {
363                 fclose(file);
364 #ifdef HAVE_MINGW
365                 unlink(filename);
366 #endif
367                 rename(tmpname, filename);
368                 free(tmpname);
369         }
370 }
371
372 void graph(void)
373 {
374         static struct event ev;
375
376         sssp_bfs();
377         mst_kruskal();
378
379         if(!timeout_initialized(&ev))
380                 timeout_set(&ev, dump_graph, NULL);
381         event_add(&ev, &(struct timeval){5, 0});
382 }