When building the minimum spanning tree, make sure we start from a reachable node.
[tinc] / src / graph.c
1 /*
2     graph.c -- graph algorithms
3     Copyright (C) 2001-2006 Guus Sliepen <guus@tinc-vpn.org>,
4                   2001-2005 Ivo Timmermans
5
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20     $Id$
21 */
22
23 /* We need to generate two trees from the graph:
24
25    1. A minimum spanning tree for broadcasts,
26    2. A single-source shortest path tree for unicasts.
27
28    Actually, the first one alone would suffice but would make unicast packets
29    take longer routes than necessary.
30
31    For the MST algorithm we can choose from Prim's or Kruskal's. I personally
32    favour Kruskal's, because we make an extra AVL tree of edges sorted on
33    weights (metric). That tree only has to be updated when an edge is added or
34    removed, and during the MST algorithm we just have go linearly through that
35    tree, adding safe edges until #edges = #nodes - 1. The implementation here
36    however is not so fast, because I tried to avoid having to make a forest and
37    merge trees.
38
39    For the SSSP algorithm Dijkstra's seems to be a nice choice. Currently a
40    simple breadth-first search is presented here.
41
42    The SSSP algorithm will also be used to determine whether nodes are directly,
43    indirectly or not reachable from the source. It will also set the correct
44    destination address and port of a node if possible.
45 */
46
47 #include "system.h"
48
49 #include "avl_tree.h"
50 #include "config.h"
51 #include "connection.h"
52 #include "device.h"
53 #include "edge.h"
54 #include "logger.h"
55 #include "netutl.h"
56 #include "node.h"
57 #include "process.h"
58 #include "subnet.h"
59 #include "utils.h"
60
61 static bool graph_changed = true;
62
63 /* Implementation of Kruskal's algorithm.
64    Running time: O(EN)
65    Please note that sorting on weight is already done by add_edge().
66 */
67
68 void mst_kruskal(void)
69 {
70         avl_node_t *node, *next;
71         edge_t *e;
72         node_t *n;
73         connection_t *c;
74         int nodes = 0;
75         int safe_edges = 0;
76         bool skipped;
77
78         cp();
79         
80         /* Clear MST status on connections */
81
82         for(node = connection_tree->head; node; node = node->next) {
83                 c = node->data;
84                 c->status.mst = false;
85         }
86
87         /* Do we have something to do at all? */
88
89         if(!edge_weight_tree->head)
90                 return;
91
92         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Running Kruskal's algorithm:");
93
94         /* Clear visited status on nodes */
95
96         for(node = node_tree->head; node; node = node->next) {
97                 n = node->data;
98                 n->status.visited = false;
99                 nodes++;
100         }
101
102         /* Starting point */
103
104         for(node = edge_weight_tree->head; node; node = next) {
105                 e = node->data;
106                 if(e->from->status.reachable) {
107                         e->from->status.visited = true;
108                         break;
109                 }
110         }
111
112         /* Add safe edges */
113
114         for(skipped = false, node = edge_weight_tree->head; node; node = next) {
115                 next = node->next;
116                 e = node->data;
117
118                 if(!e->reverse || e->from->status.visited == e->to->status.visited) {
119                         skipped = true;
120                         continue;
121                 }
122
123                 e->from->status.visited = true;
124                 e->to->status.visited = true;
125
126                 if(e->connection)
127                         e->connection->status.mst = true;
128
129                 if(e->reverse->connection)
130                         e->reverse->connection->status.mst = true;
131
132                 safe_edges++;
133
134                 ifdebug(SCARY_THINGS) logger(LOG_DEBUG, " Adding edge %s - %s weight %d", e->from->name,
135                                    e->to->name, e->weight);
136
137                 if(skipped) {
138                         skipped = false;
139                         next = edge_weight_tree->head;
140                         continue;
141                 }
142         }
143
144         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Done, counted %d nodes and %d safe edges.", nodes,
145                            safe_edges);
146 }
147
148 /* Implementation of a simple breadth-first search algorithm.
149    Running time: O(E)
150 */
151
152 void sssp_bfs(void)
153 {
154         avl_node_t *node, *next, *to;
155         edge_t *e;
156         node_t *n;
157         list_t *todo_list;
158         list_node_t *from, *todonext;
159         bool indirect;
160         char *name;
161         char *address, *port;
162         char *envp[7];
163         int i;
164
165         cp();
166
167         todo_list = list_alloc(NULL);
168
169         /* Clear visited status on nodes */
170
171         for(node = node_tree->head; node; node = node->next) {
172                 n = node->data;
173                 n->status.visited = false;
174                 n->status.indirect = true;
175         }
176
177         /* Begin with myself */
178
179         myself->status.visited = true;
180         myself->status.indirect = false;
181         myself->nexthop = myself;
182         myself->via = myself;
183         list_insert_head(todo_list, myself);
184
185         /* Loop while todo_list is filled */
186
187         for(from = todo_list->head; from; from = todonext) {    /* "from" is the node from which we start */
188                 n = from->data;
189
190                 for(to = n->edge_tree->head; to; to = to->next) {       /* "to" is the edge connected to "from" */
191                         e = to->data;
192
193                         if(!e->reverse)
194                                 continue;
195
196                         /* Situation:
197
198                                    /
199                                   /
200                            ----->(n)---e-->(e->to)
201                                   \
202                                    \
203
204                            Where e is an edge, (n) and (e->to) are nodes.
205                            n->address is set to the e->address of the edge left of n to n.
206                            We are currently examining the edge e right of n from n:
207
208                            - If e->reverse->address != n->address, then e->to is probably
209                              not reachable for the nodes left of n. We do as if the indirectdata
210                              flag is set on edge e.
211                            - If edge e provides for better reachability of e->to, update
212                              e->to and (re)add it to the todo_list to (re)examine the reachability
213                              of nodes behind it.
214                          */
215
216                         indirect = n->status.indirect || e->options & OPTION_INDIRECT
217                                 || ((n != myself) && sockaddrcmp(&n->address, &e->reverse->address));
218
219                         if(e->to->status.visited
220                            && (!e->to->status.indirect || indirect))
221                                 continue;
222
223                         e->to->status.visited = true;
224                         e->to->status.indirect = indirect;
225                         e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
226                         e->to->via = indirect ? n->via : e->to;
227                         e->to->options = e->options;
228
229                         if(sockaddrcmp(&e->to->address, &e->address)) {
230                                 node = avl_unlink(node_udp_tree, e->to);
231                                 sockaddrfree(&e->to->address);
232                                 sockaddrcpy(&e->to->address, &e->address);
233
234                                 if(e->to->hostname)
235                                         free(e->to->hostname);
236
237                                 e->to->hostname = sockaddr2hostname(&e->to->address);
238
239                                 if(node)
240                                         avl_insert_node(node_udp_tree, node);
241
242                                 if(e->to->options & OPTION_PMTU_DISCOVERY) {
243                                         e->to->mtuprobes = 0;
244                                         e->to->minmtu = 0;
245                                         e->to->maxmtu = MTU;
246                                         if(e->to->status.validkey)
247                                                 send_mtu_probe(e->to);
248                                 }
249                         }
250
251                         list_insert_tail(todo_list, e->to);
252                 }
253
254                 todonext = from->next;
255                 list_delete_node(todo_list, from);
256         }
257
258         list_free(todo_list);
259
260         /* Check reachability status. */
261
262         for(node = node_tree->head; node; node = next) {
263                 next = node->next;
264                 n = node->data;
265
266                 if(n->status.visited != n->status.reachable) {
267                         n->status.reachable = !n->status.reachable;
268
269                         if(n->status.reachable) {
270                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became reachable"),
271                                            n->name, n->hostname);
272                                 avl_insert(node_udp_tree, n);
273                         } else {
274                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became unreachable"),
275                                            n->name, n->hostname);
276                                 avl_delete(node_udp_tree, n);
277                         }
278
279                         n->status.validkey = false;
280                         n->status.waitingforkey = false;
281
282                         n->maxmtu = MTU;
283                         n->minmtu = 0;
284                         n->mtuprobes = 0;
285
286                         asprintf(&envp[0], "NETNAME=%s", netname ? : "");
287                         asprintf(&envp[1], "DEVICE=%s", device ? : "");
288                         asprintf(&envp[2], "INTERFACE=%s", iface ? : "");
289                         asprintf(&envp[3], "NODE=%s", n->name);
290                         sockaddr2str(&n->address, &address, &port);
291                         asprintf(&envp[4], "REMOTEADDRESS=%s", address);
292                         asprintf(&envp[5], "REMOTEPORT=%s", port);
293                         envp[6] = NULL;
294
295                         execute_script(n->status.reachable ? "host-up" : "host-down", envp);
296
297                         asprintf(&name,
298                                          n->status.reachable ? "hosts/%s-up" : "hosts/%s-down",
299                                          n->name);
300                         execute_script(name, envp);
301
302                         free(name);
303                         free(address);
304                         free(port);
305
306                         for(i = 0; i < 6; i++)
307                                 free(envp[i]);
308
309                         subnet_update(n, NULL, n->status.reachable);
310                 }
311         }
312 }
313
314 void graph(void)
315 {
316         sssp_bfs();
317         mst_kruskal();
318         graph_changed = true;
319 }
320
321
322
323 /* Dump nodes and edges to a graphviz file.
324            
325    The file can be converted to an image with
326    dot -Tpng graph_filename -o image_filename.png -Gconcentrate=true
327 */
328
329 void dump_graph(void)
330 {
331         avl_node_t *node;
332         node_t *n;
333         edge_t *e;
334         char *filename = NULL, *tmpname = NULL;
335         FILE *file;
336         
337         if(!graph_changed || !get_config_string(lookup_config(config_tree, "GraphDumpFile"), &filename))
338                 return;
339
340         graph_changed = false;
341
342         ifdebug(PROTOCOL) logger(LOG_NOTICE, "Dumping graph");
343         
344         if(filename[0] == '|') {
345                 file = popen(filename + 1, "w");
346         } else {
347                 asprintf(&tmpname, "%s.new", filename);
348                 file = fopen(tmpname, "w");
349         }
350
351         if(!file) {
352                 logger(LOG_ERR, "Unable to open graph dump file %s: %s", filename, strerror(errno));
353                 free(tmpname);
354                 return;
355         }
356
357         fprintf(file, "digraph {\n");
358         
359         /* dump all nodes first */
360         for(node = node_tree->head; node; node = node->next) {
361                 n = node->data;
362                 fprintf(file, " %s [label = \"%s\"];\n", n->name, n->name);
363         }
364
365         /* now dump all edges */
366         for(node = edge_weight_tree->head; node; node = node->next) {
367                 e = node->data;
368                 fprintf(file, " %s -> %s;\n", e->from->name, e->to->name);
369         }
370
371         fprintf(file, "}\n");   
372         
373         if(filename[0] == '|') {
374                 pclose(file);
375         } else {
376                 fclose(file);
377                 rename(tmpname, filename);
378                 free(tmpname);
379         }
380 }