Dump through control socket
[tinc] / src / graph.c
1 /*
2     graph.c -- graph algorithms
3     Copyright (C) 2001-2006 Guus Sliepen <guus@tinc-vpn.org>,
4                   2001-2005 Ivo Timmermans
5
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20     $Id$
21 */
22
23 /* We need to generate two trees from the graph:
24
25    1. A minimum spanning tree for broadcasts,
26    2. A single-source shortest path tree for unicasts.
27
28    Actually, the first one alone would suffice but would make unicast packets
29    take longer routes than necessary.
30
31    For the MST algorithm we can choose from Prim's or Kruskal's. I personally
32    favour Kruskal's, because we make an extra AVL tree of edges sorted on
33    weights (metric). That tree only has to be updated when an edge is added or
34    removed, and during the MST algorithm we just have go linearly through that
35    tree, adding safe edges until #edges = #nodes - 1. The implementation here
36    however is not so fast, because I tried to avoid having to make a forest and
37    merge trees.
38
39    For the SSSP algorithm Dijkstra's seems to be a nice choice. Currently a
40    simple breadth-first search is presented here.
41
42    The SSSP algorithm will also be used to determine whether nodes are directly,
43    indirectly or not reachable from the source. It will also set the correct
44    destination address and port of a node if possible.
45 */
46
47 #include "system.h"
48
49 #include "splay_tree.h"
50 #include "config.h"
51 #include "connection.h"
52 #include "device.h"
53 #include "edge.h"
54 #include "logger.h"
55 #include "netutl.h"
56 #include "node.h"
57 #include "process.h"
58 #include "subnet.h"
59 #include "utils.h"
60
61 /* Implementation of Kruskal's algorithm.
62    Running time: O(EN)
63    Please note that sorting on weight is already done by add_edge().
64 */
65
66 void mst_kruskal(void) {
67         splay_node_t *node, *next;
68         edge_t *e;
69         node_t *n;
70         connection_t *c;
71         int nodes = 0;
72         int safe_edges = 0;
73         bool skipped;
74
75         cp();
76         
77         /* Clear MST status on connections */
78
79         for(node = connection_tree->head; node; node = node->next) {
80                 c = node->data;
81                 c->status.mst = false;
82         }
83
84         /* Do we have something to do at all? */
85
86         if(!edge_weight_tree->head)
87                 return;
88
89         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Running Kruskal's algorithm:");
90
91         /* Clear visited status on nodes */
92
93         for(node = node_tree->head; node; node = node->next) {
94                 n = node->data;
95                 n->status.visited = false;
96                 nodes++;
97         }
98
99         /* Starting point */
100
101         for(node = edge_weight_tree->head; node; node = node->next) {
102                 e = node->data;
103                 if(e->from->status.reachable) {
104                         e->from->status.visited = true;
105                         break;
106                 }
107         }
108
109         /* Add safe edges */
110
111         for(skipped = false, node = edge_weight_tree->head; node; node = next) {
112                 next = node->next;
113                 e = node->data;
114
115                 if(!e->reverse || e->from->status.visited == e->to->status.visited) {
116                         skipped = true;
117                         continue;
118                 }
119
120                 e->from->status.visited = true;
121                 e->to->status.visited = true;
122
123                 if(e->connection)
124                         e->connection->status.mst = true;
125
126                 if(e->reverse->connection)
127                         e->reverse->connection->status.mst = true;
128
129                 safe_edges++;
130
131                 ifdebug(SCARY_THINGS) logger(LOG_DEBUG, " Adding edge %s - %s weight %d", e->from->name,
132                                    e->to->name, e->weight);
133
134                 if(skipped) {
135                         skipped = false;
136                         next = edge_weight_tree->head;
137                         continue;
138                 }
139         }
140
141         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Done, counted %d nodes and %d safe edges.", nodes,
142                            safe_edges);
143 }
144
145 /* Implementation of a simple breadth-first search algorithm.
146    Running time: O(E)
147 */
148
149 void sssp_bfs(void) {
150         splay_node_t *node, *next, *to;
151         edge_t *e;
152         node_t *n;
153         list_t *todo_list;
154         list_node_t *from, *todonext;
155         bool indirect;
156         char *name;
157         char *address, *port;
158         char *envp[7];
159         int i;
160
161         cp();
162
163         todo_list = list_alloc(NULL);
164
165         /* Clear visited status on nodes */
166
167         for(node = node_tree->head; node; node = node->next) {
168                 n = node->data;
169                 n->status.visited = false;
170                 n->status.indirect = true;
171         }
172
173         /* Begin with myself */
174
175         myself->status.visited = true;
176         myself->status.indirect = false;
177         myself->nexthop = myself;
178         myself->via = myself;
179         list_insert_head(todo_list, myself);
180
181         /* Loop while todo_list is filled */
182
183         for(from = todo_list->head; from; from = todonext) {    /* "from" is the node from which we start */
184                 n = from->data;
185
186                 for(to = n->edge_tree->head; to; to = to->next) {       /* "to" is the edge connected to "from" */
187                         e = to->data;
188
189                         if(!e->reverse)
190                                 continue;
191
192                         /* Situation:
193
194                                    /
195                                   /
196                            ----->(n)---e-->(e->to)
197                                   \
198                                    \
199
200                            Where e is an edge, (n) and (e->to) are nodes.
201                            n->address is set to the e->address of the edge left of n to n.
202                            We are currently examining the edge e right of n from n:
203
204                            - If e->reverse->address != n->address, then e->to is probably
205                              not reachable for the nodes left of n. We do as if the indirectdata
206                              flag is set on edge e.
207                            - If edge e provides for better reachability of e->to, update
208                              e->to and (re)add it to the todo_list to (re)examine the reachability
209                              of nodes behind it.
210                          */
211
212                         indirect = n->status.indirect || e->options & OPTION_INDIRECT
213                                 || ((n != myself) && sockaddrcmp(&n->address, &e->reverse->address));
214
215                         if(e->to->status.visited
216                            && (!e->to->status.indirect || indirect))
217                                 continue;
218
219                         e->to->status.visited = true;
220                         e->to->status.indirect = indirect;
221                         e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
222                         e->to->via = indirect ? n->via : e->to;
223                         e->to->options = e->options;
224
225                         if(sockaddrcmp(&e->to->address, &e->address)) {
226                                 node = splay_unlink(node_udp_tree, e->to);
227                                 sockaddrfree(&e->to->address);
228                                 sockaddrcpy(&e->to->address, &e->address);
229
230                                 if(e->to->hostname)
231                                         free(e->to->hostname);
232
233                                 e->to->hostname = sockaddr2hostname(&e->to->address);
234
235                                 if(node)
236                                         splay_insert_node(node_udp_tree, node);
237
238                                 if(e->to->options & OPTION_PMTU_DISCOVERY) {
239                                         e->to->mtuprobes = 0;
240                                         e->to->minmtu = 0;
241                                         e->to->maxmtu = MTU;
242                                         if(e->to->status.validkey)
243                                                 send_mtu_probe(e->to);
244                                 }
245                         }
246
247                         list_insert_tail(todo_list, e->to);
248                 }
249
250                 todonext = from->next;
251                 list_delete_node(todo_list, from);
252         }
253
254         list_free(todo_list);
255
256         /* Check reachability status. */
257
258         for(node = node_tree->head; node; node = next) {
259                 next = node->next;
260                 n = node->data;
261
262                 if(n->status.visited != n->status.reachable) {
263                         n->status.reachable = !n->status.reachable;
264
265                         if(n->status.reachable) {
266                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became reachable"),
267                                            n->name, n->hostname);
268                                 splay_insert(node_udp_tree, n);
269                         } else {
270                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became unreachable"),
271                                            n->name, n->hostname);
272                                 splay_delete(node_udp_tree, n);
273                         }
274
275                         n->status.validkey = false;
276                         n->status.waitingforkey = false;
277
278                         n->maxmtu = MTU;
279                         n->minmtu = 0;
280                         n->mtuprobes = 0;
281
282                         asprintf(&envp[0], "NETNAME=%s", netname ? : "");
283                         asprintf(&envp[1], "DEVICE=%s", device ? : "");
284                         asprintf(&envp[2], "INTERFACE=%s", iface ? : "");
285                         asprintf(&envp[3], "NODE=%s", n->name);
286                         sockaddr2str(&n->address, &address, &port);
287                         asprintf(&envp[4], "REMOTEADDRESS=%s", address);
288                         asprintf(&envp[5], "REMOTEPORT=%s", port);
289                         envp[6] = NULL;
290
291                         execute_script(n->status.reachable ? "host-up" : "host-down", envp);
292
293                         asprintf(&name,
294                                          n->status.reachable ? "hosts/%s-up" : "hosts/%s-down",
295                                          n->name);
296                         execute_script(name, envp);
297
298                         free(name);
299                         free(address);
300                         free(port);
301
302                         for(i = 0; i < 6; i++)
303                                 free(envp[i]);
304
305                         subnet_update(n, NULL, n->status.reachable);
306                 }
307         }
308 }
309
310 /* Dump nodes and edges to a graphviz file.
311            
312    The file can be converted to an image with
313    dot -Tpng graph_filename -o image_filename.png -Gconcentrate=true
314 */
315
316 int dump_graph(struct evbuffer *out) {
317         splay_node_t *node;
318         node_t *n;
319         edge_t *e;
320
321         if(evbuffer_add_printf(out, "digraph {\n") == -1)
322                 return errno;
323         
324         /* dump all nodes first */
325         for(node = node_tree->head; node; node = node->next) {
326                 n = node->data;
327                 if(evbuffer_add_printf(out, "   %s [label = \"%s\"];\n",
328                                                            n->name, n->name) == -1)
329                         return errno;
330         }
331
332         /* now dump all edges */
333         for(node = edge_weight_tree->head; node; node = node->next) {
334                 e = node->data;
335                 if(evbuffer_add_printf(out, "   %s -> %s;\n",
336                                                            e->from->name, e->to->name) == -1)
337                         return errno;
338         }
339
340         if(evbuffer_add_printf(out, "}\n") == -1)
341                 return errno;
342
343         return 0;
344 }
345
346 void graph(void) {
347         sssp_bfs();
348         mst_kruskal();
349 }