Nexthop calculation should always use the shortest path.
[tinc] / src / graph.c
1 /*
2     graph.c -- graph algorithms
3     Copyright (C) 2001-2013 Guus Sliepen <guus@tinc-vpn.org>,
4                   2001-2005 Ivo Timmermans
5
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License along
17     with this program; if not, write to the Free Software Foundation, Inc.,
18     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 /* We need to generate two trees from the graph:
22
23    1. A minimum spanning tree for broadcasts,
24    2. A single-source shortest path tree for unicasts.
25
26    Actually, the first one alone would suffice but would make unicast packets
27    take longer routes than necessary.
28
29    For the MST algorithm we can choose from Prim's or Kruskal's. I personally
30    favour Kruskal's, because we make an extra AVL tree of edges sorted on
31    weights (metric). That tree only has to be updated when an edge is added or
32    removed, and during the MST algorithm we just have go linearly through that
33    tree, adding safe edges until #edges = #nodes - 1. The implementation here
34    however is not so fast, because I tried to avoid having to make a forest and
35    merge trees.
36
37    For the SSSP algorithm Dijkstra's seems to be a nice choice. Currently a
38    simple breadth-first search is presented here.
39
40    The SSSP algorithm will also be used to determine whether nodes are directly,
41    indirectly or not reachable from the source. It will also set the correct
42    destination address and port of a node if possible.
43 */
44
45 #include "system.h"
46
47 #include "connection.h"
48 #include "device.h"
49 #include "edge.h"
50 #include "graph.h"
51 #include "list.h"
52 #include "logger.h"
53 #include "names.h"
54 #include "netutl.h"
55 #include "node.h"
56 #include "protocol.h"
57 #include "script.h"
58 #include "subnet.h"
59 #include "utils.h"
60 #include "xalloc.h"
61 #include "graph.h"
62
63 /* Implementation of Kruskal's algorithm.
64    Running time: O(EN)
65    Please note that sorting on weight is already done by add_edge().
66 */
67
68 static void mst_kruskal(void) {
69         /* Clear MST status on connections */
70
71         for list_each(connection_t, c, connection_list)
72                 c->status.mst = false;
73
74         logger(DEBUG_SCARY_THINGS, LOG_DEBUG, "Running Kruskal's algorithm:");
75
76         /* Clear visited status on nodes */
77
78         for splay_each(node_t, n, node_tree)
79                 n->status.visited = false;
80
81         /* Starting point */
82
83         for splay_each(edge_t, e, edge_weight_tree) {
84                 if(e->from->status.reachable) {
85                         e->from->status.visited = true;
86                         break;
87                 }
88         }
89
90         /* Add safe edges */
91
92         bool skipped = false;
93
94         for splay_each(edge_t, e, edge_weight_tree) {
95                 if(!e->reverse || (e->from->status.visited == e->to->status.visited)) {
96                         skipped = true;
97                         continue;
98                 }
99
100                 e->from->status.visited = true;
101                 e->to->status.visited = true;
102
103                 if(e->connection)
104                         e->connection->status.mst = true;
105
106                 if(e->reverse->connection)
107                         e->reverse->connection->status.mst = true;
108
109                 logger(DEBUG_SCARY_THINGS, LOG_DEBUG, " Adding edge %s - %s weight %d", e->from->name, e->to->name, e->weight);
110
111                 if(skipped) {
112                         skipped = false;
113                         next = edge_weight_tree->head;
114                 }
115         }
116 }
117
118 /* Implementation of a simple breadth-first search algorithm.
119    Running time: O(E)
120 */
121
122 static void sssp_bfs(void) {
123         list_t *todo_list = list_alloc(NULL);
124
125         /* Clear visited status on nodes */
126
127         for splay_each(node_t, n, node_tree) {
128                 n->status.visited = false;
129                 n->status.indirect = true;
130                 n->distance = -1;
131         }
132
133         /* Begin with myself */
134
135         myself->status.visited = true;
136         myself->status.indirect = false;
137         myself->nexthop = myself;
138         myself->prevedge = NULL;
139         myself->via = myself;
140         myself->distance = 0;
141         list_insert_head(todo_list, myself);
142
143         /* Loop while todo_list is filled */
144
145         for list_each(node_t, n, todo_list) {                   /* "n" is the node from which we start */
146                 logger(DEBUG_SCARY_THINGS, LOG_DEBUG, " Examining edges from %s", n->name);
147
148                 if(n->distance < 0)
149                         abort();
150
151                 for splay_each(edge_t, e, n->edge_tree) {       /* "e" is the edge connected to "from" */
152                         if(!e->reverse)
153                                 continue;
154
155                         /* Situation:
156
157                                    /
158                                   /
159                            ----->(n)---e-->(e->to)
160                                   \
161                                    \
162
163                            Where e is an edge, (n) and (e->to) are nodes.
164                            n->address is set to the e->address of the edge left of n to n.
165                            We are currently examining the edge e right of n from n:
166
167                            - If edge e provides for better reachability of e->to, update
168                              e->to and (re)add it to the todo_list to (re)examine the reachability
169                              of nodes behind it.
170                          */
171
172                         bool indirect = n->status.indirect || e->options & OPTION_INDIRECT;
173
174                         if(e->to->status.visited
175                            && (!e->to->status.indirect || indirect)
176                            && (e->to->distance != n->distance + 1 || e->weight >= e->to->prevedge->weight))
177                                 continue;
178
179                         // Only update nexthop if it doesn't increase the path length
180
181                         if(!e->to->status.visited || (e->to->distance == n->distance + 1 && e->weight >= e->to->prevedge->weight))
182                                 e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
183
184                         e->to->status.visited = true;
185                         e->to->status.indirect = indirect;
186                         e->to->prevedge = e;
187                         e->to->via = indirect ? n->via : e->to;
188                         e->to->options = e->options;
189                         e->to->distance = n->distance + 1;
190
191                         if(!e->to->status.reachable || (e->to->address.sa.sa_family == AF_UNSPEC && e->address.sa.sa_family != AF_UNKNOWN))
192                                 update_node_udp(e->to, &e->address);
193
194                         list_insert_tail(todo_list, e->to);
195                 }
196
197                 next = node->next; /* Because the list_insert_tail() above could have added something extra for us! */
198                 list_delete_node(todo_list, node);
199         }
200
201         list_free(todo_list);
202 }
203
204 static void check_reachability(void) {
205         /* Check reachability status. */
206
207         for splay_each(node_t, n, node_tree) {
208                 if(n->status.visited != n->status.reachable) {
209                         n->status.reachable = !n->status.reachable;
210                         n->last_state_change = now.tv_sec;
211
212                         if(n->status.reachable) {
213                                 logger(DEBUG_TRAFFIC, LOG_DEBUG, "Node %s (%s) became reachable",
214                                            n->name, n->hostname);
215                         } else {
216                                 logger(DEBUG_TRAFFIC, LOG_DEBUG, "Node %s (%s) became unreachable",
217                                            n->name, n->hostname);
218                         }
219
220                         if(experimental && OPTION_VERSION(n->options) >= 2)
221                                 n->status.sptps = true;
222
223                         /* TODO: only clear status.validkey if node is unreachable? */
224
225                         n->status.validkey = false;
226                         if(n->status.sptps) {
227                                 sptps_stop(&n->sptps);
228                                 n->status.waitingforkey = false;
229                         }
230                         n->last_req_key = 0;
231
232                         n->status.udp_confirmed = false;
233                         n->maxmtu = MTU;
234                         n->minmtu = 0;
235                         n->mtuprobes = 0;
236
237                         timeout_del(&n->mtutimeout);
238
239                         char *name;
240                         char *address;
241                         char *port;
242                         char *envp[8] = {NULL};
243
244                         xasprintf(&envp[0], "NETNAME=%s", netname ? : "");
245                         xasprintf(&envp[1], "DEVICE=%s", device ? : "");
246                         xasprintf(&envp[2], "INTERFACE=%s", iface ? : "");
247                         xasprintf(&envp[3], "NODE=%s", n->name);
248                         sockaddr2str(&n->address, &address, &port);
249                         xasprintf(&envp[4], "REMOTEADDRESS=%s", address);
250                         xasprintf(&envp[5], "REMOTEPORT=%s", port);
251                         xasprintf(&envp[6], "NAME=%s", myself->name);
252
253                         execute_script(n->status.reachable ? "host-up" : "host-down", envp);
254
255                         xasprintf(&name, n->status.reachable ? "hosts/%s-up" : "hosts/%s-down", n->name);
256                         execute_script(name, envp);
257
258                         free(name);
259                         free(address);
260                         free(port);
261
262                         for(int i = 0; i < 7; i++)
263                                 free(envp[i]);
264
265                         subnet_update(n, NULL, n->status.reachable);
266
267                         if(!n->status.reachable) {
268                                 update_node_udp(n, NULL);
269                                 memset(&n->status, 0, sizeof n->status);
270                                 n->options = 0;
271                         } else if(n->connection) {
272                                 if(n->status.sptps) {
273                                         if(n->connection->outgoing)
274                                                 send_req_key(n);
275                                 } else {
276                                         send_ans_key(n);
277                                 }
278                         }
279                 }
280         }
281 }
282
283 void graph(void) {
284         subnet_cache_flush();
285         sssp_bfs();
286         check_reachability();
287         mst_kruskal();
288 }